已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BERT-based language model for accurate drug adverse event extraction from social media: implementation, evaluation, and contributions to pharmacovigilance practices

药物警戒 社会化媒体 计算机科学 事件(粒子物理) 数据科学 药物不良反应 管理科学 药品 医学 药理学 工程类 万维网 物理 量子力学
作者
Fan Dong,Wenjing Guo,Jie Liu,Tucker A. Patterson,Huixiao Hong
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fpubh.2024.1392180
摘要

Introduction Social media platforms serve as a valuable resource for users to share health-related information, aiding in the monitoring of adverse events linked to medications and treatments in drug safety surveillance. However, extracting drug-related adverse events accurately and efficiently from social media poses challenges in both natural language processing research and the pharmacovigilance domain. Method Recognizing the lack of detailed implementation and evaluation of Bidirectional Encoder Representations from Transformers (BERT)-based models for drug adverse event extraction on social media, we developed a BERT-based language model tailored to identifying drug adverse events in this context. Our model utilized publicly available labeled adverse event data from the ADE-Corpus-V2. Constructing the BERT-based model involved optimizing key hyperparameters, such as the number of training epochs, batch size, and learning rate. Through ten hold-out evaluations on ADE-Corpus-V2 data and external social media datasets, our model consistently demonstrated high accuracy in drug adverse event detection. Result The hold-out evaluations resulted in average F1 scores of 0.8575, 0.9049, and 0.9813 for detecting words of adverse events, words in adverse events, and words not in adverse events, respectively. External validation using human-labeled adverse event tweets data from SMM4H further substantiated the effectiveness of our model, yielding F1 scores 0.8127, 0.8068, and 0.9790 for detecting words of adverse events, words in adverse events, and words not in adverse events, respectively. Discussion This study not only showcases the effectiveness of BERT-based language models in accurately identifying drug-related adverse events in the dynamic landscape of social media data, but also addresses the need for the implementation of a comprehensive study design and evaluation. By doing so, we contribute to the advancement of pharmacovigilance practices and methodologies in the context of emerging information sources like social media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tudouyu发布了新的文献求助10
5秒前
哈哈发布了新的文献求助10
7秒前
江城一霸完成签到,获得积分10
9秒前
蔓越莓奶酥完成签到,获得积分20
10秒前
5cdc发布了新的文献求助10
17秒前
17秒前
然463完成签到 ,获得积分10
18秒前
24秒前
BAN发布了新的文献求助10
24秒前
27秒前
tudouyu完成签到,获得积分10
28秒前
Patrick完成签到,获得积分10
29秒前
qqqqgc发布了新的文献求助10
29秒前
飞机云完成签到,获得积分10
32秒前
qqqqgc完成签到,获得积分20
34秒前
Cheng完成签到 ,获得积分10
35秒前
丁丁发布了新的文献求助10
36秒前
莞尔沏春茶完成签到,获得积分10
36秒前
37秒前
hhr完成签到 ,获得积分10
37秒前
小橙子完成签到 ,获得积分10
37秒前
40秒前
41秒前
芙瑞完成签到 ,获得积分10
45秒前
cccc完成签到,获得积分10
47秒前
51秒前
Yasmine完成签到 ,获得积分10
51秒前
睡觉王完成签到 ,获得积分10
53秒前
丘比特应助fnder采纳,获得20
54秒前
学术通zzz发布了新的文献求助10
55秒前
55秒前
坚果发布了新的文献求助10
1分钟前
激动的晓筠完成签到 ,获得积分10
1分钟前
曾经的柏柳完成签到,获得积分10
1分钟前
坚果完成签到,获得积分10
1分钟前
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
迅速冥茗完成签到,获得积分10
1分钟前
ZhangDaying完成签到 ,获得积分10
1分钟前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418473
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768494