Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images

分割 医学 对比度增强 对比度(视觉) 放射科 计算机断层摄影术 核医学 人工智能 计算机视觉 图像分割 计算机科学 磁共振成像
作者
Haofeng Liu,Yanyan Zhou,Shuiping Gou,Zhonghua Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108420-108420 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108420
摘要

Liver tumor segmentation (LiTS) accuracy on contrast-enhanced computed tomography (CECT) images is higher than that on non-contrast computed tomography (NCCT) images. However, CECT requires contrast medium and repeated scans to obtain multiphase enhanced CT images, which is time-consuming and cost-increasing. Therefore, despite the lower accuracy of LiTS on NCCT images, which still plays an irreplaceable role in some clinical settings, such as guided brachytherapy, ablation, or evaluation of patients with renal function damage. In this study, we intend to generate enhanced high-contrast pseudo-color CT (PCCT) images to improve the accuracy of LiTS and RECIST diameter measurement on NCCT images.To generate high-contrast CT liver tumor region images, an intensity-based tumor conspicuity enhancement (ITCE) model was first developed. In the ITCE model, a pseudo color conversion function from an intensity distribution of the tumor was established, and it was applied in NCCT to generate enhanced PCCT images. Additionally, we design a tumor conspicuity enhancement-based liver tumor segmentation (TCELiTS) model, which was applied to improve the segmentation of liver tumors on NCCT images. The TCELiTS model consists of three components: an image enhancement module based on the ITCE model, a segmentation module based on a deep convolutional neural network, and an attention loss module based on restricted activation. Segmentation performance was analyzed using the Dice similarity coefficient (DSC), sensitivity, specificity, and RECIST diameter error.To develop the deep learning model, 100 patients with histopathologically confirmed liver tumors (hepatocellular carcinoma, 64 patients; hepatic hemangioma, 36 patients) were randomly divided into a training set (75 patients) and an independent test set (25 patients). Compared with existing tumor automatic segmentation networks trained on CECT images (U-Net, nnU-Net, DeepLab-V3, Modified U-Net), the DSCs achieved on the enhanced PCCT images are both improved compared with those on NCCT images. We observe improvements of 0.696-0.713, 0.715 to 0.776, 0.748 to 0.788, and 0.733 to 0.799 in U-Net, nnU-Net, DeepLab-V3, and Modified U-Net, respectively, in terms of DSC values. In addition, an observer study including 5 doctors was conducted to compare the segmentation performance of enhanced PCCT images with that of NCCT images and showed that enhanced PCCT images are more advantageous for doctors to segment tumor regions. The results showed an accuracy improvement of approximately 3%-6%, but the time required to segment a single CT image was reduced by approximately 50 %.Experimental results show that the ITCE model can generate high-contrast enhanced PCCT images, especially in liver regions, and the TCELiTS model can improve LiTS accuracy in NCCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助nannan采纳,获得10
刚刚
咕咚完成签到,获得积分10
1秒前
哆哆发布了新的文献求助10
1秒前
张勇涛完成签到,获得积分10
2秒前
jinyu发布了新的文献求助10
3秒前
二行发布了新的文献求助20
4秒前
传奇3应助不会起名采纳,获得10
4秒前
思源应助学习猴采纳,获得10
4秒前
打打应助朱豪豪采纳,获得10
4秒前
lzy发布了新的文献求助10
5秒前
5秒前
蜻蜓完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
CipherSage应助哆哆采纳,获得10
8秒前
啾啾咪咪完成签到,获得积分10
8秒前
虚心钢笔发布了新的文献求助80
9秒前
LL完成签到,获得积分20
9秒前
窦匪完成签到,获得积分10
10秒前
范慧晨发布了新的文献求助10
11秒前
123发布了新的文献求助30
12秒前
wanci应助slin_sjtu采纳,获得30
12秒前
Xiaoxiao应助咕咚采纳,获得20
12秒前
12秒前
12秒前
12秒前
13秒前
褚翎完成签到,获得积分10
13秒前
朱豪豪完成签到,获得积分20
13秒前
14秒前
14秒前
phoebe完成签到,获得积分10
14秒前
14秒前
adastra发布了新的文献求助10
15秒前
phoebe发布了新的文献求助10
16秒前
朱豪豪发布了新的文献求助10
16秒前
16秒前
执着梦山发布了新的文献求助10
17秒前
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805783
求助须知:如何正确求助?哪些是违规求助? 3350709
关于积分的说明 10350220
捐赠科研通 3066573
什么是DOI,文献DOI怎么找? 1683863
邀请新用户注册赠送积分活动 809190
科研通“疑难数据库(出版商)”最低求助积分说明 765407