已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent electromagnetic mapping via physics driven and neural networks on frequency selective surfaces

非线性系统 人工神经网络 一般化 可解释性 计算机科学 感知器 参数统计 联轴节(管道) 斜格 梁(结构) 拓扑(电路) 物理 光学 电子工程 人工智能 数学 数学分析 工程类 机械工程 电气工程 哲学 统计 量子力学 语言学
作者
Wuxia Miao,Lamei Zhang,Bin Zou,Ye Ding
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:56 (19): 195001-195001 被引量:3
标识
DOI:10.1088/1361-6463/acc1f3
摘要

Abstract The high mapping efficiency between various structures and electromagnetic (EM) properties of frequency selective surfaces (FSSs) is the state-of-the-art in the EM community. The most straightforward approaches for beam analysis depend on measurements and conventional EM calculation methods, which are inefficient and time-consuming. Equivalent circuit models (ECMs) with excellent intuitiveness and simplicity have been put forward extensively. Despite several applications, bottlenecks in ECM still exist, i.e. the application scope is restricted to narrow bands and specific structures, which is triggered by the ignorance of EM nonlinear coupling. In this study, for the first time, a lightweight physical model based on neural network (ECM-NN) is proposed , which exhibits great physical interpretability and spatial generalization abilities. The nonlinear mapping relationship between structure and beam behavior is interpreted by corresponding simulations. Specifically, two deep parametric factors obtained by multi-layer perceptron networks are introduced to serve as the core of lightweight strategies and compensate for the absence of nonlinearity. Experimental results of single square loop (SL) and double SL indicate that compared with related works, better agreements of the frequency responses and resonant frequencies are achieved with ECM-NN in broadband (0–30 GHz) as well as oblique incident angles (0°–60°). The average accuracy of the mapping is higher than 98.6%. The findings of this study provide a novel strategy for further studies of complex FSSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助吕吕采纳,获得10
刚刚
FashionBoy应助刘慧鑫采纳,获得10
刚刚
1秒前
55发布了新的文献求助10
1秒前
3秒前
画晴完成签到,获得积分10
4秒前
爱笑天德完成签到,获得积分10
5秒前
6秒前
科研通AI6应助等待的盼波采纳,获得50
6秒前
Zhou发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
关正卿完成签到,获得积分20
10秒前
淡抹青春完成签到,获得积分10
11秒前
11秒前
内向映天完成签到 ,获得积分10
12秒前
嘻嘻嘻完成签到,获得积分10
12秒前
传奇3应助满意谷波采纳,获得10
12秒前
卷毛v发布了新的文献求助10
12秒前
凡凡发布了新的文献求助10
13秒前
qinghuan完成签到 ,获得积分10
13秒前
14秒前
科研通AI6应助彩色的沛凝采纳,获得10
15秒前
啁啾完成签到,获得积分10
15秒前
Akim应助cc采纳,获得10
15秒前
光之霓裳完成签到 ,获得积分10
16秒前
NexusExplorer应助秋霜玉采纳,获得10
16秒前
kekong发布了新的文献求助20
17秒前
qiqibaby发布了新的文献求助10
18秒前
情怀应助羞涩的千萍采纳,获得10
20秒前
科研通AI6应助Elon采纳,获得10
22秒前
SciGPT应助实验室同学采纳,获得10
26秒前
小陈完成签到 ,获得积分20
27秒前
27秒前
28秒前
29秒前
30秒前
Zhou完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548776
求助须知:如何正确求助?哪些是违规求助? 4633988
关于积分的说明 14633429
捐赠科研通 4575623
什么是DOI,文献DOI怎么找? 2509118
邀请新用户注册赠送积分活动 1485206
关于科研通互助平台的介绍 1456237