Machine-Learning-Based Hydraulic Fracturing Flowback Forecasting

水力压裂 石油工程 压裂液 页岩气 非常规油 致密气 油页岩 地质学 古生物学
作者
Jinyuan Guo,Wei Guo,Lixia Kang,Xiaowei Zhang,Jinliang Gao,Yuyang Liu,Ji Liu,Haiqing Yu
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:145 (8)
标识
DOI:10.1115/1.4056993
摘要

Abstract Hydraulic fracturing is an indispensable procedure to the economic development of shale gas. The flowback of the hydraulic fracturing fluid is one of the most important parameters recorded after shale gas wells are put into production. Generally, the flowback ratio is used as the flowback indicator during hydraulic fracturing. The flowback ratio has a great influence on shale gas production. However, the flowback ratio is subjected to various affecting factors with their correlativity unclear. Based on a large amount of original geological, engineering, and dynamic data acquired from 373 hydraulically fractured horizontal wells, the flowback characteristics were systematically studied based on machine learning. Based on the data analysis and random forest forecasting, a new indicator, single-cluster flowback ratio, was proposed, which can more effectively reflect the inherent relationship between flowback fluid volume and influencing factors. The results of training random forests for big data show that this indicator has better learnability and predictability. A good linear relationship exists between single-cluster flowback ratios in different production stages. Accordingly, the 30-day single-cluster flowback ratio can be used to predict the 90-day and 180-day single-cluster flowback ratios. The main controlling factors of production and flowback ratio were also systematically analyzed. It is found that the main controlling factors of the flowback ratio include the number of fracturing clusters, the total amount of sand, number of fracturing stages, and fluid injection intensity per cluster. This study can provide a fundamental reference for analyzing the hydraulically fracturing fluid flowback for shale gas reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KIE发布了新的文献求助10
6秒前
7秒前
木木三发布了新的文献求助10
7秒前
yuewanwan发布了新的文献求助10
12秒前
赘婿应助咖啡先生采纳,获得10
13秒前
14秒前
guaxi完成签到,获得积分10
16秒前
17秒前
骆驼林子完成签到,获得积分10
17秒前
zizi发布了新的文献求助10
20秒前
ayer完成签到,获得积分20
21秒前
icecream发布了新的文献求助10
21秒前
烟花应助骆驼林子采纳,获得10
21秒前
qiulong发布了新的文献求助10
22秒前
李健应助余木木采纳,获得10
23秒前
yuewanwan完成签到,获得积分10
24秒前
27秒前
27秒前
28秒前
霸气鞯完成签到,获得积分10
30秒前
30秒前
雪雪子哇发布了新的文献求助10
30秒前
zjz发布了新的文献求助10
32秒前
彭于晏应助科研通管家采纳,获得30
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
Ava应助科研通管家采纳,获得30
32秒前
李健的粉丝团团长应助lmq采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得30
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
汉堡包应助科研通管家采纳,获得10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
Micro_A应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976