转铁蛋白
PLGA公司
化学
生物物理学
纳米颗粒
莫西沙星
体外
生物化学
材料科学
纳米技术
抗生素
生物
作者
Gayathri Aparnasai Reddy,Mayank Handa,Debapriya Garabadu,Ravindra Kumar,Pramod Kumar Kushawaha,Rahul Shukla
标识
DOI:10.1080/03639045.2023.2185463
摘要
Complicated intra-abdominal infection (cIAI) management involves administering antibiotics that destroy the cell wall and the genesis of bacterial lipopolysaccharide (LPS). During the infectious state, the expression of transferrin receptors upregulates on the intestinal epithelial cells, which are considered the site of infection. In the present research, transferrin decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulated moxifloxacin (MOX) were developed for possible targeting of the receptors in the colon.This study will explore more about the incorporation of transferrin as effective coating material in targeted drug delivery.Nanoparticles were prepared using nano-emulsification and surface modification with transferrin was done by layer-by-layer methodology and evaluated by powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), FTIR, SEM, antibacterial activity, and cellular uptake studies.The formulated NPs exhibit a size of ≈170 nm, PDI ≈ 0.25, zeta potential ≈-4.0 mV, drug loading ≈ 6.8%, and entrapment efficiency of 82%. Transferrin-decorated NPs exhibit tailored release for almost 12 h and in vitro antibacterial activity for 14 h. The cellular uptake studies were done on a RAW264.7 cell line for better determination of transferrin uptake of fabricated NPs.The above study circumvents around the preparation of transferrin decorated PLGA encumbered MOX NPs intended for cIAI-induced sepsis. PLGA NPs provide tailored release of MOX with primary burst and followed by sustained release. These observations confines with antibacterial activity studies. The prepared transferrin-coated NPs were stable and effectively uptaken by RAW264.7 cells. However, future studies include the preclinical investigation of these NPs in sepsis-induced murine models.
科研通智能强力驱动
Strongly Powered by AbleSci AI