A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties

刚度 带隙 材料科学 超材料 振动 格子(音乐) 衰减 有限元法 凝聚态物理 结构工程 声学 光学 光电子学 复合材料 物理 工程类
作者
Jiayang Liu,Shu Li
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:16 (24): 7669-7669 被引量:2
标识
DOI:10.3390/ma16247669
摘要

The bandgap tuning potential offered by negative-stiffness lattice structures, characterized by their unique mechanical properties, represents a promising and burgeoning field. The potential of large deformations in lattice structures to transition between stable configurations is explored in this study. This transformation offers a novel method for modifying the frequency range of elastic wave attenuation, simultaneously absorbing energy and effectively generating diverse bandgap ranges. In this paper, an enhanced lattice structure is introduced, building upon the foundation of the normal negative-stiffness lattice structures. The research examined the behavior of the suggested negative-stiffness lattice structures when subjected to uniaxial compression. This included analyzing the dispersion spectra and bandgaps across different states of deformation. It also delved into the effects of geometric parameter changes on bandgap properties. Furthermore, the findings highlight that the normal negative-stiffness lattice structure demonstrates restricted capabilities in attenuating vibrations. In contrast, notable performance improvements are displayed by the improved negative-stiffness lattice structure, featuring distinct energy band structures and variable bandgap ranges in response to differing deformation states. This highlights the feasibility of bandgap tuning through the deformation of negatively stiffened structures. Finally, the overall metamaterial structure is simulated using a unit cell finite element dynamic model, and its vibration transmission properties and frequency response patterns are analyzed. A fresh perspective on the research and design of negative-stiffness lattice structures, particularly focusing on their bandgap tuning capabilities, is offered in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的小熊猫完成签到 ,获得积分10
1秒前
lojack完成签到,获得积分10
2秒前
彭于晏应助如意的书南采纳,获得10
10秒前
12秒前
12秒前
CYY发布了新的文献求助10
16秒前
17秒前
18秒前
yue发布了新的文献求助10
22秒前
22秒前
23秒前
cccc发布了新的文献求助10
25秒前
25秒前
chengche完成签到,获得积分10
27秒前
烟花应助我不是阿呆采纳,获得10
27秒前
chen测发布了新的文献求助10
28秒前
Xdz完成签到 ,获得积分10
28秒前
cccc完成签到,获得积分10
30秒前
Haibrar完成签到 ,获得积分10
33秒前
35秒前
科研通AI5应助chengche采纳,获得10
36秒前
甜蜜唯雪完成签到,获得积分10
38秒前
39秒前
pluto应助雨水采纳,获得10
42秒前
倪好完成签到,获得积分10
43秒前
科目三应助甜蜜唯雪采纳,获得10
45秒前
yue完成签到,获得积分10
49秒前
WSGQT完成签到 ,获得积分10
50秒前
55秒前
56秒前
香蕉觅云应助郁金香采纳,获得10
57秒前
温暖涫完成签到 ,获得积分10
59秒前
yorkin完成签到 ,获得积分10
59秒前
叶映安发布了新的文献求助10
1分钟前
1分钟前
土土驳回了英姑应助
1分钟前
1分钟前
1分钟前
科目三应助fishhh采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385