TIRPnet: Risk prediction of traditional Chinese medicine ingredients based on a deep neural network

中医药 人工神经网络 医学 人工智能 超参数 数据集 临床实习 机器学习 试验装置 计算机科学 深度学习 传统医学 替代医学 家庭医学 病理
作者
Jianxiang Wei,Jimin Dai,Yue-Hong Sun,Zhe Meng,Hengyuan Ma,Yujin Zhou
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:325: 117860-117860 被引量:1
标识
DOI:10.1016/j.jep.2024.117860
摘要

Traditional Chinese medicine (TCM) has a history of over 3000 years of medical practice. Due to the complex ingredients and unclear pharmacological mechanism of TCM, it is very difficult to predict its risks. With the increase in the number and severity of spontaneous reports of adverse drug reactions (ADRs) of TCM, its safety has received widespread attention. In this study, we proposed a framework based on deep learning to predict the probability of adverse reactions caused by TCM ingredients and validated the model using real-world data. The spontaneous reporting data from Jiangsu Province of China was selected as the research data, which included 72,561 ADR reports of TCMs. All the ingredients of these TCMs were collected from the medical website and correlated with the corresponding ADRs. Then, a risk prediction model was constructed based on a deep neural network (DNN), named TIRPnet. Based on one-hot encoded data, our model achieved the optimal performance by fine-tuning some hyperparameters. The ten most commonly used TCM ingredients and their ADRs were collected as the test set to evaluate their performance as objective criteria. TIRPnet was constructed as a 7-layer DNN. The experimental results showed that TIRPnet performs excellently in all indicators, with a sensitivity of 0.950, specificity of 0.995, accuracy of 0.994, precision of 0.708, and F1 of 0.811. The proposed TIRPnet owns the ability to predict the ADRs of a single TCM ingredient by learning a large number of TCM-related spontaneous reports, which can help doctors design safe prescriptions and provide technical support for the pharmacovigilance of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏惋清完成签到 ,获得积分0
1秒前
如来完成签到 ,获得积分10
1秒前
杨志坚完成签到 ,获得积分10
3秒前
科研通AI5应助黄雅静采纳,获得10
3秒前
遗迹小白完成签到,获得积分10
6秒前
李新悦发布了新的文献求助10
6秒前
录录完成签到,获得积分20
6秒前
Joseph_sss完成签到 ,获得积分10
7秒前
努力的学完成签到,获得积分10
8秒前
谦让的半山完成签到 ,获得积分10
10秒前
alex_zhao完成签到,获得积分10
10秒前
11秒前
可爱的函函应助Albee采纳,获得10
12秒前
bkagyin应助勇敢兔兔采纳,获得30
13秒前
13秒前
kang给kang的求助进行了留言
14秒前
毕个业完成签到 ,获得积分10
14秒前
lin应助勇者小超人采纳,获得10
16秒前
汉堡包应助勇者小超人采纳,获得10
16秒前
16秒前
成就的绮烟完成签到 ,获得积分10
16秒前
张苶子完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
努力学习的小垃圾完成签到,获得积分10
20秒前
PPPPP星星完成签到,获得积分10
21秒前
22秒前
22秒前
陶醉的熊发布了新的文献求助10
22秒前
22秒前
田様应助123采纳,获得30
23秒前
23秒前
25秒前
由天与完成签到,获得积分10
25秒前
共享精神应助吴五五采纳,获得10
25秒前
26秒前
读博小菜菜完成签到,获得积分10
27秒前
科研通AI5应助花灯王子采纳,获得10
27秒前
英俊的铭应助Will采纳,获得10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386