Electrocatalytic Urea Synthesis via N2 Dimerization and Universal Descriptor

电负性 催化作用 尿素 电化学 分子 过渡金属 材料科学 吸附 化学 化学物理 纳米技术 计算化学 物理化学 有机化学 电极
作者
Junxian Liu,Xingshuai Lv,Yandong Ma,Sean C. Smith,Yuantong Gu,Liangzhi Kou
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (24): 25667-25678 被引量:2
标识
DOI:10.1021/acsnano.3c10451
摘要

Electrocatalytic urea synthesis through N2 + CO2 coreduction and C-N coupling is a promising and sustainable alternative to harsh industrial processes. Despite considerable efforts, limited progress has been made due to the challenges of breaking inert N≡N bonds for C-N coupling, competing side reactions, and the absence of theoretical principles guiding catalyst design. In this study, we propose a mechanism for highly electrocatalytic urea synthesis using two adsorbed N2 molecules and CO as nitrogen and carbon sources, respectively. This mechanism circumvents the challenging step of N≡N bond breaking and selective CO2 to CO reduction, as the free CO molecule inserts into dimerized *N2 and binds concurrently with two N atoms, forming a specific urea precursor *NNCONN* with both thermodynamic and kinetic feasibility. Through the proposed mechanism, Ti2@C4N3 and V2@C4N3 are identified as highly active catalysts for electrocatalytic urea formation, exhibiting low onset potentials of -0.741 and -0.738 V, respectively. Importantly, taking transition metal atoms anchored on porous graphite-like carbonitride (TM2@C4N3) as prototypes, we introduce a simple descriptor, namely, effective d electron number (Φ), to quantitatively describe the structure-activity relationships for urea formation. This descriptor incorporates inherent atomic properties of the catalyst, such as the number of d electrons, the electronegativity of the metal atoms, and the generalized electronegativity of the substrate atoms, making it potentially applicable to other urea catalysts. Our work advances the comprehension of mechanisms and provides a universal guiding principle for catalyst design in urea electrochemical synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的蹇发布了新的文献求助10
1秒前
李健的小迷弟应助当当采纳,获得10
1秒前
研友_8y2G0L发布了新的文献求助10
1秒前
bkagyin应助爱吃饭的黄哥采纳,获得10
2秒前
香蕉觅云应助沉默初雪采纳,获得10
2秒前
6秒前
6秒前
慕青应助TALE采纳,获得10
8秒前
852应助倪小呆采纳,获得30
8秒前
8秒前
halo完成签到,获得积分10
8秒前
9秒前
FK7发布了新的文献求助10
9秒前
10秒前
chloegyy发布了新的文献求助30
11秒前
halo发布了新的文献求助10
11秒前
12秒前
aa发布了新的文献求助10
13秒前
碧蓝惜萱发布了新的文献求助10
13秒前
13秒前
不可靠的黏菌完成签到,获得积分10
14秒前
14秒前
ZZ应助科研通管家采纳,获得10
15秒前
ZZ应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得30
15秒前
秋雪瑶应助科研通管家采纳,获得10
15秒前
ZZ应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
沉默初雪发布了新的文献求助10
17秒前
栗子发布了新的文献求助10
17秒前
hongdou1216完成签到 ,获得积分10
17秒前
chen完成签到,获得积分10
17秒前
19秒前
Ava应助FK7采纳,获得10
20秒前
ljlcyx发布了新的文献求助20
21秒前
小药师发布了新的文献求助30
21秒前
在水一方应助顺利书翠采纳,获得10
21秒前
wanci应助追梦人生采纳,获得10
22秒前
幻竹完成签到,获得积分10
22秒前
22秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423470
求助须知:如何正确求助?哪些是违规求助? 2112053
关于积分的说明 5348696
捐赠科研通 1839640
什么是DOI,文献DOI怎么找? 915754
版权声明 561258
科研通“疑难数据库(出版商)”最低求助积分说明 489791