Hybrid Task Scheduling in Cloud Manufacturing With Sparse-Reward Deep Reinforcement Learning

强化学习 作业车间调度 计算机科学 调度(生产过程) 人工智能 部分可观测马尔可夫决策过程 机器学习 数学优化 地铁列车时刻表 马尔可夫链 数学 马尔可夫模型 操作系统
作者
Xiaohan Wang,Yuanjun Laili,Zhang Li,Yongkui Liu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tase.2024.3371250
摘要

Cloud manufacturing (CMfg) converts the traditional manufacturing system into an Internet-of-things-enabled (IoT-enabled) manufacturing system, where both manufacturing and computational tasks must be scheduled among distributed and heterogeneous resources. Deep reinforcement learning (DRL) has recently become a promising idea for task scheduling in CMfg. However, existing DRL-based methods depend heavily on problem-specific reward engineering and struggle to represent hybrid decision variables. To this end, this paper proposed the sparse-reward deep reinforcement learning (SDRL) method to solve the hybrid task scheduling problem in CMfg. First, the hybrid task scheduling model in CMfg is constructed to minimize the makespan. We reformulate the studied problem as a partially observable Markov decision process (POMDP). Then, the objective hindsight experience replay (objective HER) mechanism is proposed to alleviate the sparse reward issue, through which the scheduling policy can be effectively trained without problem-specific reward engineering. The continuous action space is defined to represent hybrid decision variables, and the implicit action-selection mapping is utilized to alleviate the boundary effect. Numerical experiments validated the effectiveness and superiority of our method compared to eleven popular scheduling algorithms including evolutionary algorithms and DRL. Compared to mainstream DRL scheduling methods, the proposed SDRL outperforms the second-best one at most by $23.6\%$ regarding generalization, and a scheduling solution can be generated in $0.5$ seconds. Note to Practitioners —With the intelligentization of the CMfg platform, hybrid tasks, including manufacturing and computational tasks, need to be scheduled simultaneously. However, this hybrid task scheduling problem is rarely considered by existing works. DRL exhibits many benefits in addressing scheduling problems, but the strong dependency on problem-specific reward engineering limits its application. Additionally, most DRL-based scheduling algorithms are discrete-action DRL, restricting their capacity to effectively represent hybrid decision variables. The studied problem originates from the CMfg platform, but the proposed method holds potential for broader application. The scheduling framework and the POMDP modeling can be applied to similar problems, including hybrid, manufacturing, or computational task scheduling problems. The proposed objective HER serves as a general approach to addressing challenges associated with sparse rewards, which can be extended to diverse combinatorial optimization problems aimed at optimizing an objective. We will open-source our codes to help others to apply the method to other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
复杂的板凳完成签到,获得积分10
刚刚
ysz发布了新的文献求助10
刚刚
bkagyin应助酷酷的雪碧采纳,获得10
1秒前
苏木发布了新的文献求助10
2秒前
小松鼠发布了新的文献求助10
4秒前
我爱Chem发布了新的文献求助10
5秒前
vuuu发布了新的文献求助10
5秒前
5秒前
5秒前
甜美的成败完成签到,获得积分10
5秒前
酷酷半芹完成签到 ,获得积分10
7秒前
Akim应助等待的花卷采纳,获得10
8秒前
8秒前
9秒前
肖福艳发布了新的文献求助200
9秒前
羊羊羊完成签到,获得积分10
9秒前
上官若男应助neiz采纳,获得10
9秒前
10秒前
小郭发布了新的文献求助10
10秒前
huanhuan发布了新的文献求助10
10秒前
科研牛马发布了新的文献求助10
10秒前
huang发布了新的文献求助10
12秒前
12秒前
12秒前
shanika应助活泼的觅云采纳,获得10
13秒前
啊啊啊哦哦哦完成签到,获得积分10
13秒前
13秒前
YOUNG-M发布了新的文献求助10
15秒前
wuyu完成签到,获得积分10
15秒前
15秒前
科研通AI5应助hs采纳,获得10
15秒前
zrl发布了新的文献求助10
16秒前
17秒前
痴情的小懒虫完成签到,获得积分10
17秒前
Cui完成签到,获得积分20
18秒前
19秒前
Cui发布了新的文献求助10
20秒前
21秒前
neiz发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800545
求助须知:如何正确求助?哪些是违规求助? 3345702
关于积分的说明 10327141
捐赠科研通 3062280
什么是DOI,文献DOI怎么找? 1680908
邀请新用户注册赠送积分活动 807268
科研通“疑难数据库(出版商)”最低求助积分说明 763614