亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SwinFG: A fine-grained recognition scheme based on swin transformer

判别式 计算机科学 人工智能 变压器 模式识别(心理学) 计算 算法 物理 量子力学 电压
作者
Zhipeng Ma,Xiaoyu Wu,Anzhuo Chu,Lei Huang,Zhiqiang Wei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123021-123021 被引量:21
标识
DOI:10.1016/j.eswa.2023.123021
摘要

Fine-grained image recognition (FGIR) is a challenging task as it requires the recognition of sub-categories with subtle differences. Recently, the swin transformer has shown impressive performance in various fields. Our research has shown that swin transformer applied directly to FGIR is also highly effective compared to many other approaches and can be further enhanced with adaptive improvements. In this paper, we propose a novel swin transformer based architecture, named SwinFG, which enhances FGIR by leveraging shifted window based self-attention to locate discriminative regions. The self-attention computation fuses image patches together based on attention weights, enabling the subsequent influence of each patch to be tracked and its contribution to the extracted feature to be determined. This forms the basis for locating discriminative regions. To this end, we propose a series of transformations that integrate the attention weights of local windows in each block into attention maps, which can be recursively multiplied to track changes in the attention weights. As the discriminative regions are not entirely occupied by the foreground object, the background information is also expressed in the extracted feature inevitably. To address this, we propose conducting contrastive learning on features obtained from both the discriminative and background regions of a single image to enlarge their distance and further eliminate any potential influence from the background. We demonstrate the state-of-the-art performance of our model on four popular fine-grained benchmarks. (The code is available at https://anonymous.4open.science/r/swinFG-1DCE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
行悟完成签到 ,获得积分10
8秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
赘婿应助Michelle采纳,获得10
29秒前
Kevin完成签到,获得积分10
30秒前
34秒前
movoandy发布了新的文献求助10
38秒前
45秒前
hourt2395发布了新的文献求助10
50秒前
movoandy完成签到,获得积分10
54秒前
55秒前
传奇3应助翻译度采纳,获得10
58秒前
hourt2395完成签到,获得积分20
1分钟前
1分钟前
21145077发布了新的文献求助10
1分钟前
wwho_O完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
xhh完成签到,获得积分10
1分钟前
1分钟前
1分钟前
樊乐发布了新的文献求助10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助阳光的朝雪采纳,获得10
1分钟前
樊乐完成签到,获得积分10
2分钟前
2分钟前
Lan完成签到 ,获得积分10
2分钟前
弹弹弹完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509468
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489671
捐赠科研通 4539142
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469759
关于科研通互助平台的介绍 1441996