亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SwinFG: A fine-grained recognition scheme based on swin transformer

判别式 计算机科学 人工智能 变压器 模式识别(心理学) 计算 算法 物理 量子力学 电压
作者
Zhipeng Ma,Xiaoyu Wu,Anzhuo Chu,Lei Huang,Zhiqiang Wei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123021-123021 被引量:10
标识
DOI:10.1016/j.eswa.2023.123021
摘要

Fine-grained image recognition (FGIR) is a challenging task as it requires the recognition of sub-categories with subtle differences. Recently, the swin transformer has shown impressive performance in various fields. Our research has shown that swin transformer applied directly to FGIR is also highly effective compared to many other approaches and can be further enhanced with adaptive improvements. In this paper, we propose a novel swin transformer based architecture, named SwinFG, which enhances FGIR by leveraging shifted window based self-attention to locate discriminative regions. The self-attention computation fuses image patches together based on attention weights, enabling the subsequent influence of each patch to be tracked and its contribution to the extracted feature to be determined. This forms the basis for locating discriminative regions. To this end, we propose a series of transformations that integrate the attention weights of local windows in each block into attention maps, which can be recursively multiplied to track changes in the attention weights. As the discriminative regions are not entirely occupied by the foreground object, the background information is also expressed in the extracted feature inevitably. To address this, we propose conducting contrastive learning on features obtained from both the discriminative and background regions of a single image to enlarge their distance and further eliminate any potential influence from the background. We demonstrate the state-of-the-art performance of our model on four popular fine-grained benchmarks. (The code is available at https://anonymous.4open.science/r/swinFG-1DCE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨光完成签到 ,获得积分10
17秒前
呆呆的猕猴桃完成签到 ,获得积分10
32秒前
wangrblzu应助科研通管家采纳,获得10
1分钟前
wangrblzu应助科研通管家采纳,获得10
1分钟前
cy0824完成签到 ,获得积分10
2分钟前
2分钟前
hsk发布了新的文献求助10
2分钟前
2分钟前
hsk完成签到,获得积分10
2分钟前
jqliu完成签到,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
3分钟前
wangrblzu应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
淡淡醉波wuliao完成签到 ,获得积分10
3分钟前
矜天完成签到 ,获得积分10
3分钟前
xiaozou55完成签到 ,获得积分10
4分钟前
4分钟前
xin发布了新的文献求助10
4分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
6分钟前
Liu丰发布了新的文献求助10
6分钟前
孙燕应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
wangrblzu应助科研通管家采纳,获得10
7分钟前
wangrblzu应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
114514发布了新的文献求助10
8分钟前
小蛮样完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
赘婿应助ma采纳,获得10
9分钟前
wangrblzu应助科研通管家采纳,获得10
9分钟前
iman完成签到,获得积分10
9分钟前
kbcbwb2002完成签到,获得积分10
9分钟前
9分钟前
ma发布了新的文献求助10
9分钟前
jqliu发布了新的文献求助10
9分钟前
10分钟前
10分钟前
wangrblzu应助科研通管家采纳,获得10
11分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840829
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526401
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603