Image Super-Resolution Reconstruction Model Based on Multi-Feature Fusion

特征(语言学) 人工智能 图像融合 超分辨率 融合 计算机视觉 模式识别(心理学) 图像(数学) 分辨率(逻辑) 计算机科学 哲学 语言学
作者
Zong Duo Dai
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156424400032
摘要

Due to the limitations of imaging equipment and image transmission conditions on daily image acquisition, the images acquired are usually low-resolution images, and it will cost a lot of time and economic costs to increase image resolution by upgrading hardware equipment. In this paper, we propose an image super-resolution reconstruction algorithm based on spatio-temporal-dependent residual network MSRN, which fuses multiple features. The algorithm uses the surface feature extraction module to extract the input features of the image, and then uses the deep residual aggregation module to adaptively learn the deep features, and then fuses multiple features and learns the global residual. Finally, the high-resolution image is obtained through the up-sampling module and the reconstruction module. In the model structure, different convolution kernels and jump connections are used to extract more high-frequency information, and spatio-temporal attention mechanism is introduced to focus on more image details. The experimental results show that compared with SRGAN, VDSR and Laplacian Pyramid SRN, the proposed algorithm finally achieves better reconstruction effect, and the image texture details are clearer under different scaling factors. In objective evaluation, the peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) of the proposed algorithm are improved compared with SRGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助ZM采纳,获得10
刚刚
1秒前
小轩窗zst发布了新的文献求助10
1秒前
水1111完成签到,获得积分20
2秒前
5秒前
5秒前
6秒前
小轩窗zst完成签到,获得积分10
7秒前
chenzhuod发布了新的文献求助10
11秒前
orixero应助天天看文献采纳,获得10
11秒前
飞天小女警应助念之采纳,获得20
11秒前
13秒前
16秒前
Ava应助zhang采纳,获得10
16秒前
17秒前
17秒前
CodeCraft应助爱听歌的孤容采纳,获得10
18秒前
范垂钦发布了新的文献求助10
21秒前
董研完成签到,获得积分10
22秒前
繁荣的青旋完成签到 ,获得积分10
23秒前
Liu完成签到,获得积分10
23秒前
Asura完成签到,获得积分10
23秒前
23秒前
斐嘿嘿发布了新的文献求助10
23秒前
26秒前
27秒前
完美世界应助熙熙沅沅采纳,获得10
28秒前
29秒前
111发布了新的文献求助10
30秒前
30秒前
镜中男人发布了新的文献求助20
30秒前
31秒前
灵巧迎夏完成签到,获得积分10
33秒前
南冥完成签到 ,获得积分10
33秒前
33秒前
幺儿小桃酥完成签到,获得积分10
34秒前
科研通AI5应助Dopamine采纳,获得10
34秒前
36秒前
飞天小女警应助Yi采纳,获得10
36秒前
QiaoHL发布了新的文献求助10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10280990
捐赠科研通 3053122
什么是DOI,文献DOI怎么找? 1675474
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761414