亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Surrogate-Assisted Expensive Constrained Multi-Objective Optimization Algorithm Based on Adaptive Switching of Acquisition Functions

水准点(测量) 多目标优化 计算机科学 最优化问题 进化算法 趋同(经济学) 约束优化问题 选择(遗传算法) 数学优化 约束优化 帕累托原理 优化测试函数 算法 数学 多群优化 人工智能 经济 经济增长 地理 大地测量学
作者
Haofeng Wu,Qingda Chen,Yaochu Jin,Jinliang Ding,Tianyou Chai
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 2050-2064 被引量:12
标识
DOI:10.1109/tetci.2024.3359517
摘要

Expensive constrained multi-objective optimization problems (ECMOPs) present a significant challenge to surrogate-assisted evolutionary algorithms (SAEAs) in effectively balancing optimization of the objectives and satisfaction of the constraints with complex landscapes, leading to low feasibility, poor convergence and insufficient diversity. To address these issues, we design a novel algorithm for the automatic selection of two acquisition functions, thereby taking advantage of the benefits of both using and ignoring constraints. Specifically, a multi-objective acquisition function that ignores constraints is proposed to search for problems whose unconstrained Pareto-optimal front (UPF) and constrained Pareto-optimal front (CPF) are similar. In addition, another constrained multi-objective acquisition function is introduced to search for problems whose CPF is far from the UPF. Following the optimization of the two acquisition functions, two model management strategies are proposed to select promising solutions for sampling new solutions and updating the surrogates. Any multi-objective evolutionary algorithm (MOEA) for solving non-constrained and constrained multiobjective optimization problems can be integrated into our algorithm. The performance of the proposed algorithm is evaluated on five suites of test problems, one benchmark-suite of real-world constrained multi-objective optimization problems (RWCMOPs) and a real-world optimization problem. Comparative results show that the proposed algorithm is competitive against state-of-the-art constrained SAEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
19秒前
33秒前
Akiii_完成签到,获得积分10
42秒前
54秒前
1分钟前
hongxing liu发布了新的文献求助10
1分钟前
小李新人完成签到 ,获得积分10
1分钟前
研友_R2D2发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
hongxing liu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
jianglan发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
3分钟前
breeze发布了新的文献求助30
3分钟前
3分钟前
3分钟前
Funnymudpee发布了新的文献求助10
3分钟前
Funnymudpee完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
Rocky_Qi发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472871
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432553