Longitudinal clustering of Life’s Essential 8 health metrics: application of a novel unsupervised learning method in the CARDIA study

危险系数 医学 比例危险模型 心血管健康 星团(航天器) 肥胖 队列 纵向研究 人口学 内科学 逻辑回归 疾病 老年学 置信区间 计算机科学 病理 社会学 程序设计语言
作者
Peter M Graffy,Lindsay Zimmerman,Yuan Luo,Jingzhi Yu,Yuni Choi,Rachel Zmora,Donald M. Lloyd‐Jones,Norrina B Allen
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocad240
摘要

Abstract Objective Changes in cardiovascular health (CVH) during the life course are associated with future cardiovascular disease (CVD). Longitudinal clustering analysis using subgraph augmented non-negative matrix factorization (SANMF) could create phenotypic risk profiles of clustered CVH metrics. Materials and methods Life’s Essential 8 (LE8) variables, demographics, and CVD events were queried over 15 ears in 5060 CARDIA participants with 18 years of subsequent follow-up. LE8 subgraphs were mined and a SANMF algorithm was applied to cluster frequently occurring subgraphs. K-fold cross-validation and diagnostics were performed to determine cluster assignment. Cox proportional hazard models were fit for future CV event risk and logistic regression was performed for cluster phenotyping. Results The cohort (54.6% female, 48.7% White) produced 3 clusters of CVH metrics: Healthy & Late Obesity (HLO) (29.0%), Healthy & Intermediate Sleep (HIS) (43.2%), and Unhealthy (27.8%). HLO had 5 ideal LE8 metrics between ages 18 and 39 years, until BMI increased at 40. HIS had 7 ideal LE8 metrics, except sleep. Unhealthy had poor levels of sleep, smoking, and diet but ideal glucose. Race and employment were significantly different by cluster (P < .001) but not sex (P = .734). For 301 incident CV events, multivariable hazard ratios (HRs) for HIS and Unhealthy were 0.73 (0.53-1.00, P = .052) and 2.00 (1.50-2.68, P < .001), respectively versus HLO. A 15-year event survival was 97.0% (HIS), 96.3% (HLO), and 90.4% (Unhealthy, P < .001). Discussion and conclusion SANMF of LE8 metrics identified 3 unique clusters of CVH behavior patterns. Clustering of longitudinal LE8 variables via SANMF is a robust tool for phenotypic risk assessment for future adverse cardiovascular events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahhhhhh2完成签到,获得积分10
刚刚
T_MC郭完成签到,获得积分10
1秒前
Connor完成签到,获得积分10
1秒前
uouuo完成签到 ,获得积分10
2秒前
4秒前
haiwei完成签到 ,获得积分10
6秒前
得一完成签到,获得积分10
8秒前
不是山谷完成签到,获得积分10
8秒前
胡大嘴先生完成签到,获得积分10
9秒前
阳光灿烂发布了新的文献求助10
9秒前
搞学术完成签到,获得积分10
9秒前
sunflowers完成签到 ,获得积分10
9秒前
揽月yue完成签到,获得积分10
9秒前
默默幼南完成签到,获得积分10
10秒前
沉静的绮波完成签到 ,获得积分10
12秒前
14秒前
何钦俊完成签到 ,获得积分10
15秒前
xtlee完成签到,获得积分10
16秒前
wang完成签到,获得积分10
17秒前
燕子发布了新的文献求助10
19秒前
咎青文完成签到,获得积分10
20秒前
ATREE完成签到,获得积分10
21秒前
21秒前
21秒前
zho发布了新的文献求助10
22秒前
震动的小草完成签到,获得积分10
22秒前
23秒前
李故完成签到 ,获得积分10
24秒前
美好雁荷发布了新的文献求助10
25秒前
阳光灿烂完成签到,获得积分0
26秒前
勤劳涵山完成签到,获得积分10
27秒前
优秀不愁发布了新的文献求助10
27秒前
30秒前
科研通AI2S应助Steven采纳,获得10
31秒前
小苏打完成签到,获得积分10
32秒前
tenfarmers完成签到,获得积分10
33秒前
34秒前
yangtao199发布了新的文献求助10
35秒前
Gudeguy完成签到 ,获得积分10
35秒前
优秀不愁完成签到,获得积分20
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782835
求助须知:如何正确求助?哪些是违规求助? 3328176
关于积分的说明 10235104
捐赠科研通 3043209
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759030