清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning radiomics of multimodal ultrasound for classifying metastatic cervical lymphadenopathy into primary cancer sites: a feasibility study

无线电技术 医学 颈淋巴结病 放射科 宫颈癌 模式治疗法 癌症 病理 内科学 疾病
作者
Yangyang Zhu,Zheling Meng,Hao Wu,Xiao Fan,Wenhao Lv,Jie Tian,Kun Wang,Fang Nie
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag]
卷期号:45 (03): 305-315 被引量:1
标识
DOI:10.1055/a-2161-9369
摘要

Abstract Purpose To investigate the feasibility of deep learning radiomics (DLR) based on multimodal ultrasound to differentiate the primary cancer sites of metastatic cervical lymphadenopathy (CLA). Materials and Methods This study analyzed 280 biopsy-confirmed metastatic CLAs from 280 cancer patients, including 54 from head and neck squamous cell carcinoma (HNSCC), 58 from thyroid cancer (TC), 92 from lung cancer (LC), and 76 from gastrointestinal cancer (GIC). Before biopsy, patients underwent conventional ultrasound (CUS), ultrasound elastography (UE), and contrast-enhanced ultrasound (CEUS). Based on CUS, DLR models using CUS, CUS+UE, CUS+CEUS, and CUS+UE+CEUS data were developed and compared. The best model was integrated with key clinical indicators selected by univariate analysis to achieve the best classification performance. Results All DLR models achieved similar performance with respect to classifying four primary tumor sites of metastatic CLA (AUC:0.708~0.755). After integrating key clinical indicators (age, sex, and neck level), the US+UE+CEUS+clinical model yielded the best performance with an overall AUC of 0.822 in the validation cohort, but there was no significance compared with the basal CUS+clinical model (P>0.05), both of which identified metastasis from HNSCC, TC, LC, and GIC with 0.869 and 0.911, 0.838 and 0.916, 0.750 and 0.610, and 0.829 and 0.769, respectively. Conclusion The ultrasound-based DLR model can be used to classify the primary cancer sites of metastatic CLA, and the CUS combined with clinical indicators is adequate to provide a high discriminatory performance. The addition of the combination of UE and CEUS data is expected to further improve performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
勤恳凡儿发布了新的文献求助10
22秒前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
早点吃饭发布了新的文献求助10
1分钟前
Orange应助早点吃饭采纳,获得10
1分钟前
2分钟前
2分钟前
韩寒完成签到 ,获得积分10
2分钟前
早点吃饭发布了新的文献求助10
2分钟前
早点吃饭完成签到,获得积分10
2分钟前
poki完成签到 ,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
crown发布了新的文献求助10
3分钟前
范白容完成签到 ,获得积分0
3分钟前
crown完成签到,获得积分10
3分钟前
Binbin完成签到 ,获得积分10
3分钟前
kingcoffee完成签到 ,获得积分10
3分钟前
蒲蒲完成签到 ,获得积分10
4分钟前
桐桐应助科研通管家采纳,获得10
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
binyao2024完成签到,获得积分10
5分钟前
木乙完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
澜生完成签到 ,获得积分10
6分钟前
Barid完成签到,获得积分10
6分钟前
大米小米锅锅完成签到 ,获得积分10
6分钟前
wujiwuhui完成签到 ,获得积分10
6分钟前
烟花应助科研通管家采纳,获得10
7分钟前
orixero应助科研通管家采纳,获得10
7分钟前
平常的毛豆应助Ana采纳,获得30
7分钟前
稻子完成签到 ,获得积分10
7分钟前
无悔完成签到 ,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468