A generalized energy management framework for hybrid construction vehicles via model-based reinforcement learning

强化学习 钢筋 计算机科学 能源管理 能量(信号处理) 工程类 人工智能 结构工程 数学 统计
作者
Wei Zhang,Jixin Wang,Zhenyu Xu,Yuying Shen,Guangzong Gao
出处
期刊:Energy [Elsevier BV]
卷期号:260: 124849-124849 被引量:4
标识
DOI:10.1016/j.energy.2022.124849
摘要

Hybrid construction vehicles (HCVs) have more specific tasks and highly repetitive patterns than on-road vehicles. Consequently, they are more suitable for model-based energy management. However, distinctions between work cycles result in adverse scenarios for generalizing model-based energy management. In this study, we solve this problem by proposing a generalized strategy using a model-based reinforcement learning framework. The generalized design highlights three aspects: 1) long-term stability, 2) self-learning ability, and 3) state transition model reuse. A reward function with a trend term is proposed to avoid the cumulative errors between operation cycles and improve the long-term stability of learning. In addition, Gaussian process regression is leveraged to approximate the value function, thereby reducing the computational load and improving the learning efficiency. To further enhance the reusability of the environmental model, a modelling method based on the Gaussian mixture model is put forward. Finally, a generalized HCV energy management framework that includes offline and online learning is designed, where a pre-learning model and an approximation function are adopted for reuse and dynamic learning. Simulation results demonstrate the superiority of the proposed framework to conventional model-based methods in terms of stability, generality, and adaptability, accompanied by a reduction of 5.9% in fuel consumption. • A generalized HCV energy management framework via model-based learning is proposed. • A novel reward function is designed for better long-term stability of the strategy. • Value function approximation method is used to improve the self-learning ability. • A method to enhance model reusability based on Gaussian mixture model is developed. • Experiments studies show that 5.9% fuel consumption can be saved by this framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy发布了新的文献求助10
刚刚
科研通AI5应助nczpf2010采纳,获得10
刚刚
1秒前
Vincent完成签到,获得积分10
1秒前
丘比特应助温暖寻雪采纳,获得10
3秒前
你好发布了新的文献求助10
4秒前
houlingwei完成签到,获得积分10
4秒前
夏觅柔完成签到 ,获得积分10
4秒前
科研通AI5应助健忘的尔琴采纳,获得10
4秒前
5秒前
研友_VZG7GZ应助随便采纳,获得10
5秒前
科研通AI5应助肖福艳采纳,获得10
7秒前
道尔完成签到,获得积分10
7秒前
在水一方应助cccc采纳,获得10
8秒前
9秒前
10秒前
10秒前
晴光完成签到 ,获得积分10
12秒前
12秒前
温暖寻雪完成签到,获得积分10
13秒前
Eastonlyzhang完成签到,获得积分10
13秒前
Ava应助瀚森采纳,获得30
13秒前
郎治宇完成签到,获得积分10
14秒前
14秒前
伶俐的千柔完成签到,获得积分10
15秒前
温暖寻雪发布了新的文献求助10
15秒前
15秒前
钇铯发布了新的文献求助10
16秒前
hxw完成签到,获得积分10
16秒前
16秒前
16秒前
Christine发布了新的文献求助10
16秒前
GLB发布了新的文献求助30
16秒前
houlingwei发布了新的文献求助30
17秒前
19秒前
李爱国应助你好采纳,获得10
19秒前
19秒前
拉稀摆带发布了新的文献求助10
21秒前
lizhiqian2024发布了新的文献求助10
21秒前
蟹黄宝发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807053
求助须知:如何正确求助?哪些是违规求助? 3351823
关于积分的说明 10355947
捐赠科研通 3067770
什么是DOI,文献DOI怎么找? 1684733
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765747