Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting

水流 多元统计 变压器 计算机科学 集成学习 人工智能 数学 计量经济学 机器学习 地理 工程类 流域 地图学 电气工程 电压
作者
Jinjie Fang,Linshan Yang,Xiaohu Wen,Haijiao Yu,Weide Li,Jan Adamowski,Rahim Barzegar
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:636: 131275-131275 被引量:17
标识
DOI:10.1016/j.jhydrol.2024.131275
摘要

Reliable and accurate streamflow forecasting is critical in the domain of water resources management. However, the inherently non-stationary and stochastic nature of streamflow poses a formidable challenge to achieving accuracy in streamflow forecasting. In this study, we introduce an MVMD-ensembled Transformer model (MVMD-Transformer). This model employs the MVMD technique, which allows for simultaneous time–frequency analysis of streamflow and other potential influencing factors. The model aligns common modes in the decomposition results, ensuring that the different variables corresponding to each mode have the same center frequency. This alignment overcomes frequency mismatches and helps uncover the intrinsic patterns and essential features between streamflow and associated variables. During the forecasting phase, the Transformer component of the MVMD-Transformer model establishes connections among streamflow and other influencing factors across pairs of nodes in each mode. We tested the effectiveness of the MVMD-Transformer model on streamflow forecasting in the Shiyang River, Heihe River, and Shule River basins situated in the Hexi Corridor of Northwest China, with 1-, 3-, 5-, and 7-day forecasting horizons. The MVMD-Transformer model harnesses MVMD for the simultaneous decomposition of forecast variables (precipitation, air temperature, air pressure, soil moisture) and the response variable (streamflow). Subsequently, the resulting modes from the MVMD were fed into the Transformer, serving as the forecast analytics engine, for streamflow forecasting. Furthermore, we conducted a comprehensive performance evaluation by comparing the MVMD-Transformer model against four alternatives: the VMD-ensembled Transformer model (VMD-Transformer), CEEMDAN-ensembled Transformer model (CEEMDAN-Transformer), stand-alone Transformer model, and LSTM model. The results indicate that MVMD-Transformer outperformed all other models, achieving Nash-Sutcliffe coefficient (NSE) values exceeding 0.85 in the majority of the forecasting scenarios. This superior performance highlights the proficiency of the MVMD approach in more accurately unraveling the intricate interdependencies between streamflow and its various potential influencing factors, thus significantly improving the precision of streamflow forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yellow完成签到 ,获得积分10
1秒前
丘比特应助sanner采纳,获得10
2秒前
david完成签到 ,获得积分10
2秒前
浮云完成签到,获得积分10
4秒前
6秒前
NiKkKoO完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
青山落日秋月春风完成签到,获得积分10
11秒前
sanner发布了新的文献求助10
14秒前
君齐完成签到,获得积分10
18秒前
19秒前
22秒前
盐汽水完成签到 ,获得积分10
23秒前
中科院饲养员完成签到,获得积分10
24秒前
科研通AI5应助害羞映容采纳,获得10
28秒前
君齐发布了新的文献求助10
30秒前
32秒前
科研通AI5应助是龙龙呀采纳,获得10
34秒前
feiyang完成签到,获得积分10
35秒前
我是老大应助科研小虫采纳,获得10
36秒前
lqh0211完成签到,获得积分10
39秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
47秒前
feiyang发布了新的文献求助10
50秒前
单薄的尔烟完成签到 ,获得积分10
53秒前
sgl发布了新的文献求助10
54秒前
科研闲人完成签到,获得积分10
55秒前
56秒前
57秒前
yznfly应助与你采纳,获得20
59秒前
平淡如天发布了新的文献求助10
1分钟前
1分钟前
小党完成签到,获得积分10
1分钟前
宋子虎完成签到 ,获得积分10
1分钟前
1分钟前
善良的剑通完成签到 ,获得积分10
1分钟前
Harbour-Y完成签到,获得积分10
1分钟前
科研小虫发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864358
求助须知:如何正确求助?哪些是违规求助? 3406684
关于积分的说明 10650930
捐赠科研通 3130640
什么是DOI,文献DOI怎么找? 1726523
邀请新用户注册赠送积分活动 831767
科研通“疑难数据库(出版商)”最低求助积分说明 780009