亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting

水流 多元统计 变压器 计算机科学 集成学习 人工智能 数学 计量经济学 机器学习 地理 工程类 流域 地图学 电压 电气工程
作者
Jinjie Fang,Linshan Yang,Xiaohu Wen,Haijiao Yu,Weide Li,Jan Adamowski,Rahim Barzegar
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:636: 131275-131275 被引量:21
标识
DOI:10.1016/j.jhydrol.2024.131275
摘要

Reliable and accurate streamflow forecasting is critical in the domain of water resources management. However, the inherently non-stationary and stochastic nature of streamflow poses a formidable challenge to achieving accuracy in streamflow forecasting. In this study, we introduce an MVMD-ensembled Transformer model (MVMD-Transformer). This model employs the MVMD technique, which allows for simultaneous time–frequency analysis of streamflow and other potential influencing factors. The model aligns common modes in the decomposition results, ensuring that the different variables corresponding to each mode have the same center frequency. This alignment overcomes frequency mismatches and helps uncover the intrinsic patterns and essential features between streamflow and associated variables. During the forecasting phase, the Transformer component of the MVMD-Transformer model establishes connections among streamflow and other influencing factors across pairs of nodes in each mode. We tested the effectiveness of the MVMD-Transformer model on streamflow forecasting in the Shiyang River, Heihe River, and Shule River basins situated in the Hexi Corridor of Northwest China, with 1-, 3-, 5-, and 7-day forecasting horizons. The MVMD-Transformer model harnesses MVMD for the simultaneous decomposition of forecast variables (precipitation, air temperature, air pressure, soil moisture) and the response variable (streamflow). Subsequently, the resulting modes from the MVMD were fed into the Transformer, serving as the forecast analytics engine, for streamflow forecasting. Furthermore, we conducted a comprehensive performance evaluation by comparing the MVMD-Transformer model against four alternatives: the VMD-ensembled Transformer model (VMD-Transformer), CEEMDAN-ensembled Transformer model (CEEMDAN-Transformer), stand-alone Transformer model, and LSTM model. The results indicate that MVMD-Transformer outperformed all other models, achieving Nash-Sutcliffe coefficient (NSE) values exceeding 0.85 in the majority of the forecasting scenarios. This superior performance highlights the proficiency of the MVMD approach in more accurately unraveling the intricate interdependencies between streamflow and its various potential influencing factors, thus significantly improving the precision of streamflow forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
cookie完成签到,获得积分10
31秒前
33秒前
传奇3应助recardo采纳,获得50
52秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
recardo发布了新的文献求助50
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zll完成签到,获得积分20
1分钟前
tonydymt完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
李娇完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
aprise完成签到 ,获得积分10
2分钟前
隐形曼青应助快乐的惜儿采纳,获得10
2分钟前
3分钟前
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
斯文败类应助ayeben采纳,获得10
3分钟前
充电宝应助Cheung2121采纳,获得30
3分钟前
3分钟前
ayeben发布了新的文献求助10
3分钟前
ayeben完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
斯文败类应助dllneu采纳,获得10
4分钟前
4分钟前
4分钟前
dllneu发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
打打应助dllneu采纳,获得10
5分钟前
5分钟前
瓶子发布了新的文献求助10
5分钟前
5分钟前
在水一方应助CC采纳,获得10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4029464
求助须知:如何正确求助?哪些是违规求助? 3568339
关于积分的说明 11356194
捐赠科研通 3299409
什么是DOI,文献DOI怎么找? 1816686
邀请新用户注册赠送积分活动 890920
科研通“疑难数据库(出版商)”最低求助积分说明 813903