Decellularized lotus petioles integrated microfluidic chips for neural cell alignment monitoring

去细胞化 微流控 莲花 纳米技术 莲花效应 脚手架 计算机科学 材料科学 化学 生物 生物医学工程 工程类 植物 原材料 有机化学
作者
Nan Xia,Yujuan Zhu,Rui Liu,Weiwei Chen,Yuanjin Zhao,Lingyun Sun
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:255: 110621-110621 被引量:9
标识
DOI:10.1016/j.compositesb.2023.110621
摘要

Proper alignment of neural cells is critical for maintaining their physiological function, while it is still challenging to induce and monitor such alignment in a cost-effective manner. Here, we presented a novel monitoring system to fulfill this unmet need by integrating decellularized lotus with microfluidic chips. The decellularized lotus petioles were demonstrated to be high cytocompatibilty. As a naturally derived scaffold with porous structures and topological features, these lotus petioles facilitated the alignment and differentiation of neural PC12 cells. In addition, the aligned neural networks exhibited enhanced neural activities such as firing, suggesting the effectiveness of decellularized lotus petioles in improving neural function. To monitor cell alignment efficiently, the multifunctional neuron-on-a-chip system was constructed by integrating decellularized lotus petioles inside a “Christmas tree” microfluidics. As the microfluidics could form stable gradient of nerve growth factors (NGF), the concentration dependent neurite growth of the cultured PC12 cells could be observed. Based on these features, the practical values of the decellularized lotus integrated microfluidic chips were demonstrated by their ability to effectively induce as well as real-time monitoring of cell alignment in a “green’, cost-saving and high-throughput manner. Thus, we believed that such a system could benefit future research on neuronal cells and open a new route for neural regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活力的以寒完成签到 ,获得积分10
3秒前
超人Steiner发布了新的文献求助10
3秒前
4秒前
Aicy1111111完成签到,获得积分10
4秒前
5秒前
勤劳黄豆发布了新的文献求助10
7秒前
十三完成签到 ,获得积分10
7秒前
7秒前
12完成签到,获得积分10
8秒前
震人发布了新的文献求助10
10秒前
扎心应助吃饭饭采纳,获得10
11秒前
蜡笔小新完成签到,获得积分10
12秒前
12秒前
li发布了新的文献求助10
13秒前
Bear完成签到,获得积分10
13秒前
parker完成签到 ,获得积分10
14秒前
Shilly完成签到,获得积分10
14秒前
十三发布了新的文献求助10
15秒前
BBQ发布了新的文献求助10
15秒前
15秒前
科研通AI5应助1111采纳,获得10
16秒前
17秒前
任性茉莉发布了新的文献求助10
17秒前
勤劳黄豆完成签到,获得积分10
17秒前
20秒前
乐乐应助冷傲以珊采纳,获得30
21秒前
jack完成签到,获得积分10
22秒前
捣蛋发布了新的文献求助10
23秒前
25秒前
舒畅发布了新的文献求助10
26秒前
科目三应助雪原小猫采纳,获得10
27秒前
隼叶完成签到,获得积分10
29秒前
轻松傲薇发布了新的文献求助20
29秒前
allen发布了新的文献求助10
29秒前
科研通AI5应助cjh采纳,获得10
30秒前
艺术家完成签到,获得积分10
30秒前
resonliu0827完成签到,获得积分10
31秒前
33秒前
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836569
求助须知:如何正确求助?哪些是违规求助? 3378884
关于积分的说明 10506466
捐赠科研通 3098617
什么是DOI,文献DOI怎么找? 1706576
邀请新用户注册赠送积分活动 821075
科研通“疑难数据库(出版商)”最低求助积分说明 772431