GroupAligner : A Deep Reinforcement Learning with Domain Adaptation for Social Group Alignment

计算机科学 强化学习 社交网络(社会语言学) 领域(数学分析) 人工智能 人际关系 特征(语言学) 社会网络分析 社会学习 学习迁移 机器学习 数据科学 万维网 知识管理 社会化媒体 语言学 哲学 数学 组合数学 数学分析
作者
Li Sun,Yang Du,Shuai Gao,Junda Ye,Feiyang Wang,Fuxin Ren,Mingchen Liang,Yue Wang,Shuhai Wang
出处
期刊:ACM Transactions on The Web [Association for Computing Machinery]
卷期号:17 (3): 1-30 被引量:6
标识
DOI:10.1145/3580509
摘要

Social network alignment, which aims to uncover the correspondence across different social networks, shows fundamental importance in a wide spectrum of applications such as cross-domain recommendation and information propagation. In the literature, the vast majority of the existing studies focus on the social network alignment at user level. In practice, the user-level alignment usually relies on abundant personal information and high-quality supervision, which is expensive and even impossible in the real-world scenario. Alternatively, we propose to study the problem of social group alignment across different social networks, focusing on the interests of social groups rather than personal information. However, social group alignment is non-trivial and faces significant challenges in both (i) feature inconsistency across different social networks and (ii) group discovery within a social network. To bridge this gap, we present a novel GroupAligner , a deep reinforcement learning with domain adaptation for social group alignment. In GroupAligner , to address the first issue, we propose the cycle domain adaptation approach with the Wasserstein distance to transfer the knowledge from the source social network, aligning the feature space of social networks in the distribution level. To address the second issue, we model the group discovery as a sequential decision process with reinforcement learning in which the policy is parameterized by a proposed p roximity-enhanced G raph N eural N etwork (pGNN) and a GNN-based discriminator to score the reward. Finally, we utilize pre-training and teacher forcing to stabilize the learning process of GroupAligner . Extensive experiments on several real-world datasets are conducted to evaluate GroupAligner , and experimental results show that GroupAligner outperforms the alternative methods for social group alignment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fmx完成签到,获得积分10
2秒前
黄石发布了新的文献求助10
3秒前
叁壹粑粑完成签到,获得积分10
4秒前
花肠完成签到,获得积分10
4秒前
6秒前
7秒前
深情安青应助彦嘉采纳,获得30
10秒前
色泽发布了新的文献求助10
10秒前
syhero完成签到,获得积分10
12秒前
JrPaleo101应助陈子皮boy采纳,获得10
12秒前
13秒前
思源应助黄石采纳,获得10
14秒前
打打应助缪伟采纳,获得20
15秒前
maox1aoxin应助缓慢的如波采纳,获得50
15秒前
撒西不理完成签到,获得积分10
17秒前
鸡鱼蚝发布了新的文献求助30
17秒前
19秒前
橘子圭令完成签到,获得积分10
19秒前
司忆完成签到 ,获得积分10
21秒前
21秒前
24秒前
所所应助鸡鱼蚝采纳,获得10
24秒前
李爱国应助123采纳,获得10
28秒前
缪伟发布了新的文献求助20
28秒前
Lamis完成签到 ,获得积分10
29秒前
化羽归尘完成签到,获得积分10
30秒前
31秒前
zouzou完成签到,获得积分10
32秒前
称心的海完成签到,获得积分10
32秒前
36秒前
hx完成签到,获得积分10
37秒前
奔波儿灞完成签到,获得积分20
38秒前
周杰伦发布了新的文献求助10
38秒前
穆奕完成签到 ,获得积分10
42秒前
42秒前
jify完成签到,获得积分10
43秒前
钟sss完成签到,获得积分10
46秒前
mmb完成签到,获得积分10
47秒前
rong发布了新的文献求助10
48秒前
48秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445