环氧乙烷
催化作用
乙二醇
膜
化学工程
静电纺丝
光引发剂
材料科学
纳米纤维
聚合物
高分子化学
共聚物
化学
纳米技术
有机化学
复合材料
单体
工程类
生物化学
作者
Emanuele Maccaferri,Andrea Canciani,Laura Mazzocchetti,Tiziana Benelli,Loris Giorgini,Stefania Albonetti
出处
期刊:Membranes
[Multidisciplinary Digital Publishing Institute]
日期:2023-02-08
卷期号:13 (2): 212-212
被引量:3
标识
DOI:10.3390/membranes13020212
摘要
Catalysts are used for producing the vast majority of chemical products. Usually, catalytic membranes are inorganic. However, when dealing with reactions conducted at low temperatures, such as in the production of fine chemicals, polymeric catalytic membranes are preferred due to a more competitive cost and easier tunability compared to inorganic ones. In the present work, nanofibrous mats made of poly(ethylene oxide), PEO, and poly(ethylene glycol) diacrylate, PEGDA, blends with the Au/Pd catalyst are proposed as catalytic membranes for water phase and low-temperature reactions. While PEO is a water-soluble polymer, its blending with PEGDA can be exploited to make the overall PEO/PEGDA blend nanofibers water-resistant upon photo-crosslinking. Thus, after the optimization of the blend solution (PEO molecular weight, PEO/PEGDA ratio, photoinitiator amount), electrospinning process, and UV irradiation time, the resulting nanofibrous mat is able to maintain the nanostructure in water. The addition of the Au6/Pd1 catalyst (supported on TiO2) in the PEO/PEGDA blend allows the production of a catalytic nanofibrous membrane. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), taken as a water phase model reaction, demonstrates the potential usage of PEO-based membranes in catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI