已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantification of microalgae concentration based on multi-channel spectral fusion and 1D-CNN

频道(广播) 融合 计算机科学 生物系统 环境科学 人工智能 材料科学 电信 生物 哲学 语言学
作者
Ying Chen,Chenglong Wang,Junfei Liu,Junru Zhang,Wanwen Li,Jin Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc030
摘要

Abstract Microalgae have been widely commercially cultivated, and their cell concentration is crucial for determining key cultivation parameters such as light intensity, temperature, and nutrient concentration. Absorption and fluorescence spectra are effective methods for detecting microalgal concentration. However, absorption spectra are weak and prone to interference at low concentrations, while fluorescence spectra are affected by the inner filter effect at high concentrations. To overcome these limitations, this study proposes a microalgal concentration prediction method based on a one-dimensional convolutional neural network (1D-CNN) that fuses multi-band LED-induced fluorescence spectra and visible absorption spectra. We develop three fusion strategies: concatenation, channel-tacking, and dual-branch, and design three different 1D-CNN models for multispectral fusion, followed by performance comparisons. Experiments are conducted using CNN and three nonlinear machine learning models on multiple spectral datasets. The results show that multi-band fluorescence spectra fusion and asymmetric least squares processed absorption spectra significantly improve prediction performance. Using the fused spectral dataset for prediction yields the best results, with CNN performing notably better than other prediction models. Further comparisons of fusion strategies reveal that the channel-stacking fusion method yield the best performance, indicating that multichannel spectral fusion can improve the prediction accuracy. The model achieved a coefficient of determination (R²) above 0.989 and a root mean square error (RMSE) below 0.1000 on two microalgal test sets. Fluorescence and absorption spectral fusion, combined with deep learning, offer a feasible and cost-effective strategy for accurate algal biomass monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lalala发布了新的文献求助10
1秒前
drwang完成签到,获得积分10
3秒前
lychee发布了新的文献求助10
3秒前
3秒前
蜀黍完成签到 ,获得积分10
6秒前
8秒前
Orange应助yangjoy采纳,获得10
8秒前
8秒前
HSY发布了新的文献求助10
9秒前
情怀应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
12秒前
传奇3应助冷静导师采纳,获得30
12秒前
Glassy发布了新的文献求助10
14秒前
15秒前
nice完成签到,获得积分10
15秒前
momo发布了新的文献求助10
16秒前
小花排草应助nn采纳,获得30
17秒前
nice发布了新的文献求助10
18秒前
20秒前
无花果应助Rosin采纳,获得10
20秒前
感动傲易发布了新的文献求助30
22秒前
petrichor发布了新的文献求助10
23秒前
26秒前
27秒前
科研通AI2S应助任性的馒头采纳,获得10
27秒前
汉堡包应助文静的海采纳,获得10
28秒前
32秒前
Rosin发布了新的文献求助10
33秒前
34秒前
36秒前
38秒前
某某发布了新的文献求助10
38秒前
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4183590
求助须知:如何正确求助?哪些是违规求助? 3719406
关于积分的说明 11722895
捐赠科研通 3398631
什么是DOI,文献DOI怎么找? 1864764
邀请新用户注册赠送积分活动 922353
科研通“疑难数据库(出版商)”最低求助积分说明 834021