LMCBert: An Automatic Academic Paper Rating Model Based on Large Language Models and Contrastive Learning

计算机科学 自然语言处理 对比分析 语言学 人工智能 心理学 哲学
作者
Chuanbin Liu,Xiaowu Zhang,Hongfei Zhao,Zhijie Liu,Xi Xi,Lean Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tcyb.2025.3550203
摘要

The acceptance of academic papers involves a complex peer-review process that requires substantial human and material resources and is susceptible to biases. With advancements in deep learning technologies, researchers have explored automated approaches for assessing paper acceptance. Existing automated academic paper rating methods primarily rely on the full content of papers to estimate acceptance probabilities. However, these methods are often inefficient and introduce redundant or irrelevant information. Additionally, while Bert can capture general semantic representations through pretraining on large-scale corpora, its performance on the automatic academic paper rating (AAPR) task remains suboptimal due to discrepancies between its pretraining corpus and academic texts. To address these issues, this study proposes LMCBert, a model that integrates large language models (LLMs) with momentum contrastive learning (MoCo). LMCBert utilizes LLMs to extract the core semantic content of papers, reducing redundancy and improving the understanding of academic texts. Furthermore, it incorporates MoCo to optimize Bert training, enhancing the differentiation of semantic representations and improving the accuracy of paper acceptance predictions. Empirical evaluations demonstrate that LMCBert achieves effective performance on the evaluation dataset, supporting the validity of the proposed approach. The code and data used in this article are publicly available at https://github.com/iioSnail/LMCBert.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张达完成签到 ,获得积分10
3秒前
zoushiyi发布了新的文献求助10
4秒前
格局打开完成签到,获得积分10
4秒前
zxm发布了新的文献求助10
4秒前
迅速的八宝粥完成签到,获得积分20
7秒前
leaf完成签到,获得积分20
8秒前
qingzhiwu完成签到,获得积分10
9秒前
会飞的鱼完成签到 ,获得积分10
10秒前
10秒前
11秒前
淡如菊完成签到,获得积分10
12秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
大个应助科研通管家采纳,获得10
12秒前
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
打打应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
sy发布了新的文献求助10
16秒前
16秒前
风趣飞柏发布了新的文献求助10
16秒前
cdercder应助爱笑的觅双采纳,获得10
16秒前
SHY发布了新的文献求助10
17秒前
17秒前
夜雨声烦完成签到,获得积分10
18秒前
123完成签到,获得积分10
18秒前
lcw发布了新的文献求助10
19秒前
Akim应助sjx采纳,获得10
20秒前
lizhiqian2024发布了新的文献求助10
20秒前
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802646
求助须知:如何正确求助?哪些是违规求助? 3348268
关于积分的说明 10337419
捐赠科研通 3064257
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764013