作者
Tiantian Wang,Jun Zhang,Houssni Lamkaddam,Kun Li,Ka Yuen Cheung,Lisa Kattner,Erlend Gammelsæter,M. Bauer,Zachary C. J. Decker,Deepika Bhattu,Ru‐Jin Huang,Robin L. Modini,Jay G. Slowik,Imad El Haddad,Andrê S. H. Prévôt,David M. Bell
摘要
Abstract. Solid fuel (SF) combustions, including coal and biomass, are important sources of pollutants in the particle and gas phase and therefore have significant implications for air quality, climate, and human health. In this study, we systematically examined gas-phase emissions, using the Vocus proton-transfer-reaction time-of-flight (PTR-TOF) mass spectrometer, from a variety of solid fuels, including beech logs, spruce/pine logs, spruce/pine branches and needles, straw, cow dung, and coal. The average emission factors (EFs) for organic vapors ranged from 4.8 to 74.2 g kg−1, depending on the combustion phases and solid fuel types. Despite slight differences in modified combustion efficiency (MCE) for some experiments, increasing EFs for organic vapors were observed with lower MCE. The relative contribution of different classes showed large similarities between the combustion phases in beech logs stove burning, relative to the large change in EFs observed. The CxHyOz family is the most abundant group of the organic vapor emitted from all SF combustion. However, among these SF combustions, a greater contribution of nitrogen-containing species and CxHy families (related to polycyclic aromatic hydrocarbons) is observed in the organic vapors from cow dung burning and coal burning, respectively. Intermediate-volatility organic compounds (IVOCs) constituted a significant fraction of emissions in solid fuel combustion, ranging from 12.6 % to 39.3 %. This was particularly notable in the combustion of spruce/pine branches and needles (39.3 %) and coal (31.1 %). Using the Mann–Whitney U test on the studied fuels, we identified specific potential new markers for these fuels based on the Vocus measurements. The product from pyrolysis of coniferyl-type lignin and the extract of cedar pine needle were identified as markers in the open burning of spruce/pine branches and needles (e.g., C10H14O2, C11H14O2, C10H10O2). The product (C9H12O) from the pyrolysis of beech lignin was identified as the potential new marker for beech log stove burning. Many series of nitrogen-containing homologues (e.g., C10H11–21NO, C12H11–21N, C11H11–23NO, and C15H15–31N) and nitrogen-containing species (e.g., acetonitrile, acrylonitrile, propanenitrile, methylpentanenitrile) were specifically identified in cow dung burning emissions. Polycyclic aromatic hydrocarbons (PAHs) with 9–12 carbons were identified with significantly higher abundance from coal burning compared to emissions from other studied fuels. The composition of these organic vapors reflects the burned solid fuel types and can help constrain emissions of solid fuel burning in regional models.