亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly supervised pathological differentiation of primary central nervous system lymphoma and glioblastoma on multi-site whole slide images

原发性中枢神经系统淋巴瘤 医学 特征(语言学) 人工智能 模式识别(心理学) 接收机工作特性 胶质母细胞瘤 磁共振成像 提取器 病理 淋巴瘤 计算机科学 放射科 癌症研究 内科学 哲学 语言学 工艺工程 工程类
作者
Liping Wang,Lin Chen,Kuo‐Chen Wei,Huiyu Zhou,Reyer Zwiggelaar,Weiwei Fu,Yingchao Liu
出处
期刊:Journal of medical imaging [SPIE]
卷期号:12 (01)
标识
DOI:10.1117/1.jmi.12.1.017502
摘要

PurposeDifferentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity. Existing research focuses on radiological differentiation, which mostly uses multi-parametric magnetic resonance imaging. By contrast, we investigate the pathological differentiation between the two types of tumors using whole slide images (WSIs) of postoperative formalin-fixed paraffin-embedded samples.ApproachTo learn the specific and intrinsic histological feature representations from the WSI patches, a self-supervised feature extractor is trained. Then, the patch representations are fused by feeding into a weakly supervised multiple-instance learning model for the WSI classification. We validate our approach on 134 PCNSL and 526 GBM cases collected from three hospitals. We also investigate the effect of feature extraction on the final prediction by comparing the performance of applying the feature extractors trained on the PCNSL/GBM slides from specific institutions, multi-site PCNSL/GBM slides, and large-scale histopathological images.ResultsDifferent feature extractors perform comparably with the overall area under the receiver operating characteristic curve value exceeding 85% for each dataset and close to 95% for the combined multi-site dataset. Using the institution-specific feature extractors generally obtains the best overall prediction with both of the PCNSL and GBM classification accuracies reaching 80% for each dataset.ConclusionsThe excellent classification performance suggests that our approach can be used as an assistant tool to reduce the pathologists' workload by providing an accurate and objective second diagnosis. Moreover, the discriminant regions indicated by the generated attention heatmap improve the model interpretability and provide additional diagnostic information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YamDaamCaa应助jyy采纳,获得200
50秒前
1分钟前
1分钟前
旅行的小七仔完成签到,获得积分10
1分钟前
星辰大海应助优秀的颤采纳,获得10
2分钟前
2分钟前
CipherSage应助xxxxx炒菜采纳,获得30
3分钟前
QHX完成签到,获得积分10
3分钟前
QHX发布了新的文献求助10
3分钟前
liudy完成签到,获得积分10
3分钟前
我是老大应助小能采纳,获得10
3分钟前
江枫渔火完成签到 ,获得积分10
3分钟前
orixero应助QHX采纳,获得10
3分钟前
3分钟前
liudy发布了新的文献求助10
3分钟前
慕青应助Sutera采纳,获得10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
4分钟前
xxxxx炒菜发布了新的文献求助30
4分钟前
刘天宇完成签到 ,获得积分10
4分钟前
光合作用完成签到,获得积分10
4分钟前
4分钟前
yushisan完成签到 ,获得积分10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
xxxxx炒菜发布了新的文献求助10
4分钟前
5分钟前
5分钟前
优秀的颤发布了新的文献求助10
5分钟前
桐桐应助优秀的颤采纳,获得10
6分钟前
陶醉的烤鸡完成签到 ,获得积分10
6分钟前
庾摇伽完成签到,获得积分10
6分钟前
7分钟前
长风发布了新的文献求助10
7分钟前
粽子完成签到,获得积分10
7分钟前
Linden_bd完成签到 ,获得积分10
8分钟前
sino-ft完成签到,获得积分10
8分钟前
8分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130635
求助须知:如何正确求助?哪些是违规求助? 3667490
关于积分的说明 11600844
捐赠科研通 3365558
什么是DOI,文献DOI怎么找? 1849109
邀请新用户注册赠送积分活动 912878
科研通“疑难数据库(出版商)”最低求助积分说明 828355