Experiment-Guided Refinement of Milestoning Network

计算机科学 分歧(语言学) 弹道 动能 采样(信号处理) 统计物理学 功能(生物学) 力场(虚构) 算法 数学优化 物理 数学 经典力学 人工智能 哲学 语言学 滤波器(信号处理) 天文 进化生物学 计算机视觉 生物
作者
Xiaojun Ji,Hao Wang,Wenjian Liu
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01436
摘要

Milestoning is an efficient method for calculating rare event kinetics by constructing a continuous-time kinetic network that connects the reactant and product states. Its accuracy depends on both the quality of the underlying force fields and the trajectory sampling. The sampling error can be effectively controlled through various methods. However, the force fields are often not accurate enough, leading to quantitative discrepancies between simulations and experimental data. To address this challenge, we present a refinement approach for Milestoning network based on the maximum caliber (MaxCal), a general variational principle for dynamical systems, to combine simulations and experimental data. The Kullback-Leibler divergence rate between two Milestoning networks is analytically evaluated and minimized as the loss function. Meanwhile, experimental thermodynamic (equilibrium constants) and kinetic (rate constants) data are incorporated as constraints. The use of MaxCal implies that the refined kinetic network is minimally perturbed from the original one while satisfying the experimental constraints. The refined network is expected to align better with available experimental data. The refinement approach is demonstrated using the binding and unbinding dynamics of a series of six small molecule ligands for the model host system, β-cyclodextrin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
An完成签到,获得积分10
1秒前
6秒前
6秒前
8秒前
9秒前
打地鼠工人完成签到,获得积分10
9秒前
10秒前
11秒前
Oreki完成签到,获得积分10
12秒前
daheeeee发布了新的文献求助10
14秒前
Q蒂发布了新的文献求助10
14秒前
可爱的函函应助panbaobao采纳,获得10
18秒前
隐形曼青应助俏皮的如霜采纳,获得10
19秒前
chicony发布了新的文献求助10
22秒前
张同学完成签到,获得积分10
24秒前
zjmm发布了新的文献求助10
26秒前
SciEngineerX完成签到,获得积分10
27秒前
Summertrain完成签到,获得积分10
27秒前
Q蒂完成签到 ,获得积分20
27秒前
冷静的秋白完成签到 ,获得积分10
28秒前
29秒前
31秒前
32秒前
Life完成签到,获得积分10
32秒前
gy发布了新的文献求助10
32秒前
烟花应助啦啦啦采纳,获得10
33秒前
马保国123完成签到,获得积分10
34秒前
纯真黄蜂发布了新的文献求助10
34秒前
小高完成签到,获得积分10
34秒前
Life发布了新的文献求助30
35秒前
科研通AI2S应助lucky采纳,获得10
36秒前
流飒完成签到,获得积分10
37秒前
Akim应助执着的岂愈采纳,获得10
39秒前
39秒前
义气笑容完成签到,获得积分10
43秒前
研友_VZG7GZ应助菏西采纳,获得10
44秒前
46秒前
畅快山兰完成签到 ,获得积分10
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552