已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Signature methods in machine learning

指数函数 数据流挖掘 噪音(视频) 可扩展性 系列(地层学) 维数(图论) 计算机科学 算法 缩放比例 签名(拓扑) 有损压缩 二次方程 数据流 数学 理论计算机科学 数据挖掘 组合数学 人工智能 统计 数学分析 几何学 古生物学 数据库 生物 图像(数学)
作者
Andrew McLeod,Terry Lyons
出处
期刊:EMS surveys in mathematical sciences [EMS Press]
被引量:1
标识
DOI:10.4171/emss/95
摘要

Signature-based techniques give mathematical insight into the interactions between complex streams of evolving data. These insights can be quite naturally translated into numerical approaches to understanding streamed data, and perhaps because of their mathematical precision, have proved useful in analysing streamed data in situations where the data is irregular, and not stationary, and the dimension of the data and the sample sizes are both moderate. Understanding streamed multi-modal data is exponential: a word in n letters from an alphabet of size d can be any one of d^{n} messages. Signatures provide a “lossy compression” of the information contained within such a stream by filtering out the parameterisation noise. More concretely, suppose we have a time series with 3 channels and N samples. There are 1 + 3N + \frac{3N(3N+1)}{2}= 1 + \frac{9}{2}N(N+1) linearly independent quadratic polynomials defined on the time series. But the signature of this time series truncated to depth 2 only consists of 1 + 3 + 3^{2} = 13 components which is, in particular, independent of the number of samples N . However, whilst the independence of the number of samples N has removed an exponential amount of noise, the dependence on the number of channels to the power of the depth ensures that an exponential amount of information remains. This survey aims to stay in the domain where that exponential scaling can be managed directly. Scalability issues are an important challenge in many problems but would require another survey article and further ideas. This survey describes a range of contexts where the data sets are small and the existence of small sets of context free and principled features can be used effectively. The mathematical nature of the tools can make their use intimidating to non-mathematicians. The examples presented in this article are intended to bridge this communication gap and provide tractable working examples drawn from the machine learning context. Notebooks are available online for several of these examples. This survey builds on the earlier paper of Ilya Chevryev and Andrey Kormilitzin which had broadly similar aims at an earlier point in the development of this machinery. This article illustrates how the theoretical insights offered by signatures are simply realised in the analysis of application data in a way that is largely agnostic to the data type. Larger and more complex problems would expect to address scalability issues and draw on a wider range of data science techniques. The article starts with a brief discussion of background material related to machine learning and signatures. This discussion fixes notation and terminology whilst simplifying the dependencies, but these background sections are not a substitute for the extensive literature they draw from. Hopefully, by working some of the examples, the reader will find access to useful and simple to deploy tools; tools that are moderately effective in analysing longitudinal data that is complex and irregular in contexts where massive machine learning is not a possibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lychee完成签到,获得积分10
3秒前
feiyang完成签到 ,获得积分10
4秒前
文静的海发布了新的文献求助10
5秒前
在水一方应助ceeray23采纳,获得20
10秒前
10秒前
10秒前
Cell完成签到 ,获得积分10
11秒前
洁净纸鹤完成签到,获得积分10
11秒前
曲奇完成签到,获得积分20
12秒前
12秒前
lalala发布了新的文献求助10
13秒前
drwang完成签到,获得积分10
15秒前
lychee发布了新的文献求助10
15秒前
15秒前
蜀黍完成签到 ,获得积分10
18秒前
20秒前
Orange应助yangjoy采纳,获得10
20秒前
20秒前
HSY发布了新的文献求助10
21秒前
情怀应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
24秒前
传奇3应助冷静导师采纳,获得30
24秒前
Glassy发布了新的文献求助10
26秒前
27秒前
nice完成签到,获得积分10
27秒前
momo发布了新的文献求助10
28秒前
小花排草应助nn采纳,获得30
29秒前
nice发布了新的文献求助10
30秒前
32秒前
无花果应助Rosin采纳,获得10
32秒前
感动傲易发布了新的文献求助30
34秒前
petrichor发布了新的文献求助10
35秒前
38秒前
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4183590
求助须知:如何正确求助?哪些是违规求助? 3719406
关于积分的说明 11722895
捐赠科研通 3398631
什么是DOI,文献DOI怎么找? 1864764
邀请新用户注册赠送积分活动 922353
科研通“疑难数据库(出版商)”最低求助积分说明 834021