亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of machine learning models for predicting depressive symptoms in knee osteoarthritis patients

随机森林 逻辑回归 决策树 接收机工作特性 机器学习 骨关节炎 预测建模 人工智能 Lasso(编程语言) 人工神经网络 决策树模型 曲线下面积 医学 回归分析 计算机科学 内科学 替代医学 病理 万维网
作者
Dan Li,Lu Han,Junhui Wu,Hongbo Chen,Meidi Shen,Beibei Tong,Wen Zeng,Weixuan Wang,Shaomei Shang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-79601-x
摘要

Knee osteoarthritis (KOA) combined with depressive symptoms is prevalent and leads to poor outcomes and significant financial burdens. However, practical tools for identifying at-risk patients remain limited. A robust prediction model is needed to address this gap. This study aims to develop and validate a predictive model to identify KOA patients at risk of developing depressive symptoms. The China Health and Retirement Longitudinal Survey (CHARLS) data were used for model development and the Osteoarthritis Initiative (OAI) for external validation. 18 potential predictors were selected using LASSO regression. 4 machine learning models—logistic regression, decision tree, random forest, and artificial neural network—were developed. Model performance was assessed using the area under the operating characteristic curve (AUC), calibration curves, and decision curve analysis. The most important features were extracted from the optimal model on external validation. A total of 469 individuals were included, with 70% used for training and 30% for testing. The random forest model achieved the best performance, with an AUC of 0.928 in the test set, outperforming logistic regression (AUC 0.622), decision tree (AUC 0.611), and neural network models (AUC 0.868). External validation revealed an AUC of 0.877 (95% CI: 0.864–0.889) for the adjusted random forest model. Pain severity was the most significant predictor, followed by the five-time sit-to-stand test (FTSST) and sleep problems. This study is the first in China to apply a predictive model for depressive symptoms in KOA patients, offering a practical tool for early risk identification using routinely available data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
慕青应助好耶采纳,获得10
17秒前
24秒前
27秒前
Claudia发布了新的文献求助10
28秒前
54秒前
qiandi完成签到 ,获得积分10
55秒前
1分钟前
好耶发布了新的文献求助10
1分钟前
1分钟前
nina完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
橙子发布了新的文献求助10
2分钟前
2分钟前
腼腆的小熊猫完成签到 ,获得积分10
2分钟前
2分钟前
Havitya发布了新的文献求助10
2分钟前
斯文败类应助妩媚的幼丝采纳,获得10
2分钟前
2分钟前
妩媚的幼丝应助文件撤销了驳回
3分钟前
可爱的函函应助Gaopkid采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
Gaopkid完成签到,获得积分20
3分钟前
3分钟前
Gaopkid发布了新的文献求助10
3分钟前
沉默的依霜完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
今后应助天边道士采纳,获得10
5分钟前
5分钟前
科研通AI2S应助cccc1111111采纳,获得10
6分钟前
7分钟前
YP_024发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808036
求助须知:如何正确求助?哪些是违规求助? 3352717
关于积分的说明 10360120
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810359
科研通“疑难数据库(出版商)”最低求助积分说明 766045