亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Bi-Recommendation and Self-Improving Network for Heterogeneous Domain Adaptation-Assisted IoT Intrusion Detection

计算机科学 入侵检测系统 计算机网络 适应(眼睛) 物联网 域适应 分布式计算 计算机安全 人工智能 物理 光学 分类器(UML)
作者
Jiashu Wu,Yang Wang,Hao Dai,Cheng‐Zhong Xu,Kenneth B. Kent
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (15): 13205-13220 被引量:7
标识
DOI:10.1109/jiot.2023.3262458
摘要

As Internet of Things (IoT) devices become prevalent, using intrusion detection to protect IoT from malicious intrusions is of vital importance. However, the data scarcity of IoT hinders the effectiveness of traditional intrusion detection methods. To tackle this issue, in this article, we propose the adaptive bi-recommendation and self-improving network (ABRSI) based on unsupervised heterogeneous domain adaptation (HDA). The ABRSI transfers enrich intrusion knowledge from a data-rich network intrusion source domain to facilitate effective intrusion detection for data-scarce IoT target domains. The ABRSI achieves fine-grained intrusion knowledge transfer via adaptive bi-recommendation matching. Matching the bi-recommendation interests of two recommender systems (RSs) and the alignment of intrusion categories in the shared feature space form a mutual-benefit loop. Besides, the ABRSI uses a self-improving mechanism, autonomously improving the intrusion knowledge transfer from four ways. A hard pseudo label (PL) voting mechanism jointly considers RS decision and label relationship information to promote more accurate hard PL assignment. To promote diversity and target data participation during intrusion knowledge transfer, target instances failing to be assigned with a hard PL will be assigned with a probabilistic soft PL, forming a hybrid pseudo-labeling strategy. Meanwhile, the ABRSI also makes soft pseudo-labels globally diverse and individually certain. Finally, an error knowledge learning mechanism is utilized to adversarially exploit factors that causes detection ambiguity and learns through both current and previous error knowledge, preventing error knowledge forgetfulness. Holistically, these mechanisms form the ABRSI model that boosts IoT intrusion detection accuracy via HDA-assisted intrusion knowledge transfer. Comprehensive experiments on several intrusion data sets demonstrate the state-of-the-art performance of the ABRSI method, outperforming its counterparts by 9.2%, and also verify the effectiveness of ABRSI constituting components and ABRSI's overall efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzz完成签到,获得积分10
6秒前
13秒前
shuke完成签到,获得积分10
14秒前
dormraider完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助涨涨涨采纳,获得10
18秒前
FashionBoy应助居居子采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
海云发布了新的文献求助10
19秒前
21秒前
Wu完成签到 ,获得积分10
23秒前
28秒前
海云完成签到,获得积分20
29秒前
KLED完成签到 ,获得积分10
30秒前
乐乐完成签到 ,获得积分10
30秒前
Omni完成签到,获得积分10
32秒前
32秒前
思源应助Omni采纳,获得10
38秒前
xiuxiuxiu发布了新的文献求助10
42秒前
余周周完成签到 ,获得积分10
42秒前
慕青应助海云采纳,获得10
43秒前
44秒前
Yummy发布了新的文献求助10
48秒前
畅快谷秋完成签到 ,获得积分10
50秒前
53秒前
科研通AI5应助Yummy采纳,获得10
57秒前
Shuo Yang完成签到,获得积分10
57秒前
58秒前
居居子发布了新的文献求助10
59秒前
HH完成签到 ,获得积分10
1分钟前
我是老大应助xiuxiuxiu采纳,获得10
1分钟前
LJ完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Yilam发布了新的文献求助10
1分钟前
Skuld应助Shuo Yang采纳,获得20
1分钟前
吾皇完成签到 ,获得积分10
1分钟前
1分钟前
Darlene完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795527
求助须知:如何正确求助?哪些是违规求助? 3340528
关于积分的说明 10300465
捐赠科研通 3057048
什么是DOI,文献DOI怎么找? 1677401
邀请新用户注册赠送积分活动 805401
科研通“疑难数据库(出版商)”最低求助积分说明 762491