钙钛矿(结构)
串联
基质(水族馆)
材料科学
光电子学
带隙
堆栈(抽象数据类型)
钙钛矿太阳能电池
纳米技术
能量转换效率
化学
结晶学
复合材料
计算机科学
海洋学
程序设计语言
地质学
作者
Yurui Wang,Renxing Lin,Xiaoyu Wang,Chenshuaiyu Liu,Yameen Ahmed,Zilong Huang,Zhibin Zhang,Hongjiang Li,Mei Zhang,Yuan Gao,Haowen Luo,Pu Wu,Han Gao,Xuntian Zheng,Manya Li,Zhou Liu,Wenchi Kong,Ludong Li,Kaihui Liu,Makhsud I. Saidaminov
标识
DOI:10.1038/s41467-023-37492-y
摘要
Abstract The commonly-used superstrate configuration (depositing front subcell first and then depositing back subcell) in all-perovskite tandem solar cells is disadvantageous for long-term stability due to oxidizable narrow-bandgap perovskite assembled last and easily exposable to air. Here we reverse the processing order and demonstrate all-perovskite tandems in a substrate configuration (depositing back subcell first and then depositing front subcell) to bury oxidizable narrow-bandgap perovskite deep in the device stack. By using guanidinium tetrafluoroborate additive in wide-bandgap perovskite subcell, we achieve an efficiency of 25.3% for the substrate-configured all-perovskite tandem cells. The unencapsulated devices exhibit no performance degradation after storage in dry air for 1000 hours. The substrate configuration also widens the choice of flexible substrates: we achieve 24.1% and 20.3% efficient flexible all-perovskite tandem solar cells on copper-coated polyethylene naphthalene and copper metal foil, respectively. Substrate configuration offers a promising route to unleash the commercial potential of all-perovskite tandem solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI