亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi‐AGV route planning in automated warehouse system based on shortest‐time Q‐learning algorithm

线路规划 计算机科学 算法 平面图(考古学) 邻接矩阵 邻接表 运动规划 机器人 数学优化 人工智能 理论计算机科学 数学 图形 考古 历史
作者
Zheng Zhang,Juan Chen,Wenbing Zhao
出处
期刊:Asian Journal of Control [Wiley]
卷期号:26 (2): 683-702 被引量:5
标识
DOI:10.1002/asjc.3075
摘要

Abstract Route planning for automated guided vehicles (AGVs) is one of the key factors that affects work efficiency of automated storage and retrieval systems (AS/RSes). Route planning plays an important role in the operation of AGVs. Since the characteristic of AS/RSes is chessboard‐like, the environment is more complex than traditional route planning environments because the number of nodes is large, more than one shortest route exists between two nodes, and the routes with the shortest distance may not be the most energy‐saving routes. Although the traditional route planning algorithms such as the classical Q‐learning algorithm can work well in AGV route planning, it also has some limitations. This paper proposes a novel multi‐AGV route planning approach to solving the AGV route planning problem in the chessboard‐like warehouse, which can improve the route planning efficiency greatly. First, by combining adjacency matrix and reward matrix, we propose a low‐dimensional adjacency‐reward matrix for route planning. This algorithm improves the efficiency of classical Q‐learning algorithms and accelerates dynamic route planning significantly. We further improve the algorithm by considering the travel directions to minimize the number of turns in the route and additionally by considering whether the AGV is loaded or not and plan routes accordingly. Finally, we propose a multi‐AGV online collision‐free route planning algorithm based on these considerations for dynamic route planning for multi‐AGVs operating in a large‐scale warehouse. The proposed algorithms are validated with several case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助13508104971采纳,获得10
1秒前
11秒前
满意人英完成签到,获得积分10
28秒前
斯文的苡完成签到,获得积分10
1分钟前
1分钟前
001完成签到,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
4分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
4分钟前
友好的白柏完成签到 ,获得积分10
4分钟前
李健的小迷弟应助Sandy采纳,获得10
5分钟前
人谷完成签到 ,获得积分10
5分钟前
人谷呀完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
华仔应助羽生结弦的馨馨采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
qqq完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
早睡一哥完成签到,获得积分10
8分钟前
002完成签到,获得积分10
8分钟前
包容的剑完成签到 ,获得积分10
8分钟前
8分钟前
003完成签到,获得积分10
8分钟前
淡淡醉波wuliao完成签到 ,获得积分10
8分钟前
9分钟前
Sandy发布了新的文献求助10
9分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229