Synergizing Low Rank Representation and Deep Learning for Automatic Pavement Crack Detection

深度学习 计算机科学 人工智能 联营 卷积神经网络 棱锥(几何) 代表(政治) 特征学习 秩(图论) 机器学习 模式识别(心理学) 数学 政治 组合数学 政治学 法学 几何学
作者
Zhi Gao,Xuhui Zhao,Min Cao,Ziyao Li,Kangcheng Liu,Ben M. Chen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 10676-10690 被引量:8
标识
DOI:10.1109/tits.2023.3275570
摘要

Due to the critical role of pavement crack detection for road maintenance and eventually ensuring safety, remarkable efforts have been devoted to this research area, and such a trend is further intensified for the coming unmanned vehicle era. However, such crack detection task still remains unexpectedly challenging in practice since the appearance of both cracks and the background are diverse and complex in real scenarios. In this work, we propose an automatic pavement crack detection method via synergizing low rank representation (LRR) and deep learning techniques. First, leveraging LRR which facilitates anomaly detection without making any specific assumption, we can easily discriminate most of the frames with cracks from the long sequence with a consistent pavement base, followed by a straightforward algorithm to localize the cracks. In order to achieve the intelligence of detecting cracks with different pavement basis under unconstrained imaging conditions, we resort to deep learning techniques and propose a deep convolutional neural network for crack detection leveraging on multi-level features and atrous spatial pyramid pooling (ASPP). We train this network based on the training data obtained in the previous stage in an end-to-end manner. Extensive experiments on a wide range of pavements demonstrate the high performance in terms of both accuracy and automaticity. Moreover, the dataset generated by us is much more extensive and challenging than public ones. We put it online at https://gaozhinuswhu.com to benefit the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈可欣发布了新的文献求助10
1秒前
2秒前
4秒前
6秒前
善学以致用应助llg采纳,获得10
7秒前
汪汪完成签到,获得积分10
7秒前
寒冷子轩发布了新的文献求助10
8秒前
小云发布了新的文献求助10
8秒前
RuiZ发布了新的文献求助10
9秒前
9秒前
exosome完成签到,获得积分10
11秒前
11秒前
堂风完成签到,获得积分10
12秒前
Zz完成签到,获得积分10
12秒前
科目三应助Cedric采纳,获得10
13秒前
领导范儿应助Zz采纳,获得10
18秒前
18秒前
所所应助跳跃的语柔采纳,获得10
19秒前
领导范儿应助VIVIAN采纳,获得10
22秒前
23秒前
共享精神应助Kang采纳,获得10
26秒前
26秒前
细心的梦芝完成签到 ,获得积分10
27秒前
27秒前
无花果应助超锅采纳,获得10
29秒前
34秒前
zyc关闭了zyc文献求助
35秒前
今天只做一件事应助PPL采纳,获得10
37秒前
清爽老九应助Wizard采纳,获得10
37秒前
40秒前
小犁牛完成签到 ,获得积分10
43秒前
阡陌完成签到 ,获得积分10
43秒前
44秒前
44秒前
汉堡包应助niu采纳,获得10
45秒前
VIVIAN完成签到,获得积分20
45秒前
46秒前
明明完成签到,获得积分10
46秒前
VIVIAN发布了新的文献求助10
51秒前
内向映天完成签到 ,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669