Balancing exploration and exploitation in episodic reinforcement learning

强化学习 计算机科学 激励 人工智能 再分配(选举) 风险分析(工程) 机器学习 业务 微观经济学 政治学 政治 经济 法学
作者
Qihang Chen,Qiwei Zhang,Yunlong Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:231: 120801-120801 被引量:1
标识
DOI:10.1016/j.eswa.2023.120801
摘要

One of the major challenges in reinforcement learning (RL) is its applications in episodic tasks, such as chess game, molecular structure design, healthcare, among others, where the rewards in such scenarios are usually sparse and can only be obtained at the end of an episode. The challenges posed by such episodic RL tasks place stringent demands on the exploration and credit assignment capabilities of the agent. In the current literature, many techniques have been presented to address these two issues, for example, various exploration methods have been proposed to increase the exploration ability of the agents to obtain diverse experience samples, and for the delayed reward problem, reward redistribution methods have provided dense task-oriented guidance to the agents by reshaping the sparse and delayed environmental rewards with the assistance of the episodic feedback. Although some successes have been achieved, with current existing techniques, the agents are usually unable to quickly assign credits to the explored key transitions or the related methods are prone to be misled by behavioral policies that fall into local optima and lead to sluggish learning efficiency. To alleviate inefficient learning due to sparse and delayed rewards, we propose a guided reward approach, namely Exploratory Intrinsic with Mission Guidance Reward (EMR), which organically combines intrinsic rewards of exploration mechanisms with reward redistribution in RL to balance exploration and exploitation of RL agents in such tasks. By using entropy-based intrinsic incentives and a simple uniform reward redistribution method, EMR will enable an agent with both the strong exploration and exploitation capability to efficiently overcome challenging tasks with such sparse and delayed rewards. We evaluated and analyzed EMR on several tasks in the Deep Mind Control Suite benchmark, experimental results show that the EMR-equipped agent has faster learning efficiency and even better performance than those using the exploration bonus or the reward redistribution method alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助西瓜西瓜采纳,获得10
刚刚
1秒前
兰静发布了新的文献求助10
1秒前
2秒前
席傲柏完成签到,获得积分10
2秒前
PiX0应助橘子采纳,获得10
2秒前
小Q完成签到,获得积分10
2秒前
3秒前
Owen应助大明采纳,获得10
3秒前
不要困发布了新的文献求助10
3秒前
6秒前
yzp111发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
7秒前
科研通AI5应助逆风采纳,获得30
7秒前
laola发布了新的文献求助10
9秒前
冬青ouo发布了新的文献求助10
9秒前
10秒前
科研通AI5应助福西西采纳,获得30
10秒前
我是老大应助浪子采纳,获得10
10秒前
10秒前
橘子的角动量给橘子的角动量的求助进行了留言
10秒前
11秒前
12秒前
zhangxiaoqing完成签到,获得积分10
12秒前
13秒前
zephyr发布了新的文献求助10
13秒前
哈哈哈呵呵给哈哈哈呵呵的求助进行了留言
13秒前
852应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得30
14秒前
所所应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
罗罗应助科研通管家采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404595
求助须知:如何正确求助?哪些是违规求助? 3890679
关于积分的说明 12108102
捐赠科研通 3535473
什么是DOI,文献DOI怎么找? 1939927
邀请新用户注册赠送积分活动 980836
科研通“疑难数据库(出版商)”最低求助积分说明 877501