Pseudo-Label-Vector-Guided Parallel Attention Network for Remaining Useful Life Prediction

可解释性 计算机科学 支持向量机 模块化设计 人工智能 理论(学习稳定性) 时间序列 过程(计算) 数据挖掘 任务(项目管理) 机器学习 预言 光学(聚焦) 相关性 数据建模 工程类 数学 物理 几何学 系统工程 光学 数据库 操作系统
作者
Ye-Soo Park,Jou Won Song,Suk-Ju Kang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 5602-5611
标识
DOI:10.1109/tii.2022.3202832
摘要

Prognostic health management (PHM) has become important in many industries as a critical technology to increase machine stability and operational efficiency. Recently, various methods using deep learning to estimate the remaining useful life (RUL) as a core task of PHM have been proposed. However, the existing attention methods do not explicitly capture the correlation between temporal and spatial time series, reducing the RUL prediction accuracy. This article proposes a novel RUL prediction algorithm using a spatiotemporal attention mechanism based on the pseudo-label vectors to solve this problem. The proposed attention network uses the pseudo-label vector learned in the intermediate prediction process as a query vector to focus on time sequence data related to the RUL. Therefore, compared with conventional attention models that extract correlations for all the sequences, the proposed model captures features directly related to RUL with less computational cost. Experiments have been performed on two widely used datasets, and the experimental results show that the proposed approach outperforms the state of the art for root-mean-square error, with averages 4.27 and 3039 in the NASA Commercial Modular Aero-Propulsion System Simulation dataset and the IEEE PHM 2012 Prognostic challenge dataset, respectively. In addition, the analysis in the experiment reveals that the proposed model has better interpretability than the existing models by obtaining the correlation between time-series data and the RUL through the attention score in terms of time and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今夕何夕发布了新的文献求助10
1秒前
4秒前
科研通AI5应助olivia采纳,获得10
6秒前
tiantian8715完成签到,获得积分10
7秒前
Leucalypt完成签到,获得积分10
7秒前
Bin发布了新的文献求助10
11秒前
11秒前
11秒前
Kry4taloL完成签到 ,获得积分10
12秒前
12秒前
科目三应助chrysan采纳,获得10
14秒前
乐乐应助今夕何夕采纳,获得10
15秒前
欢呼煎蛋发布了新的文献求助10
16秒前
19秒前
Bin关闭了Bin文献求助
20秒前
ckz完成签到,获得积分10
20秒前
Peggy完成签到,获得积分10
21秒前
IIII完成签到,获得积分10
22秒前
24秒前
olivia发布了新的文献求助10
25秒前
科研通AI2S应助糖豆采纳,获得10
25秒前
28秒前
今夕何夕发布了新的文献求助10
28秒前
30秒前
32秒前
kk发布了新的文献求助10
34秒前
Jasper应助莲子粥采纳,获得10
34秒前
打打应助欢呼煎蛋采纳,获得30
34秒前
35秒前
orixero应助科研通管家采纳,获得10
36秒前
今后应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得30
36秒前
36秒前
阿飘应助科研通管家采纳,获得10
36秒前
36秒前
Ava应助科研通管家采纳,获得10
36秒前
zmnzmnzmn应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
xjyyy完成签到 ,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315