Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer

乳腺癌 医学 无线电技术 新辅助治疗 完全响应 肿瘤科 放射科 癌症 内科学 化疗
作者
Qiao Zeng,Fei Xiong,Lan Liu,Linhua Zhong,Fengqin Cai,Xianjun Zeng
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S38-S49 被引量:17
标识
DOI:10.1016/j.acra.2023.04.009
摘要

Rationale and Objectives To compare the value of radiomics and diameter% based on pre- and early-treatment dynamic enhanced MR (DCE-MRI) of the breast in predicting response to neoadjuvant therapy (NAT) in breast cancer and to construct a tool for early noninvasive prediction of NAT outcomes. Materials and Methods Retrospective analysis of clinical and imaging data of 142 patients with primary invasive breast cancer who underwent DCE-MRI before and after two cycles of NAT at our institution. Enroled patients were randomly assigned in a 7:3 ratio to the training group and the test group. Patients were divided into pathological complete response (pCR) and non-pathological complete response groups based on surgical pathology findings after NAT. The maximum diameter relative regression values (Diameter%) before and after treatment were calculated and the conventional imaging Diameter% model was constructed. Based on pre- and early-NAT DCE-MRI, the optimal features of pre-NAT, early-NAT, and delta radiomics were screened using redundancy analysis, least absolute shrinkage, and selection operator methods to construct the corresponding radiomics model and calculate the Radscores. Indicators that were statistically significant in the univariate analysis of clinical data were further screened by stepwise regression and combined with Radscores to construct the fusion model. All models were evaluated and compared. Results In the test set, the area under the curve (AUC) of the delta radiomics model (0.87) was higher than that of the pre-NAT, early-NAT radiomics models (0.57, 0.78) and the Diameter% model (0.83). The fusion model had the best efficacy in predicting pCR after NAT, with AUCs of 0.91 in the training and test sets. And its nomogram plot showed that Radscore of early-NAT radiomics had the greatest weight. In the test set, the fusion model and Delta radiomics model improved the efficacy of predicting pCR by 35.56% and 14.19%, respectively, compared to the Diameter% model (P = 0 and .039). Clinical decision curves showed the highest overall clinical benefit for the fusion model. Conclusion Radiomics, especially delta and early-NAT radiomics, may be potential biomarkers for early noninvasive prediction of NAT outcomes. And a fusion model constructed from meaningful clinicopathological indicators combined with radiomics can effectively predict NAT response. To compare the value of radiomics and diameter% based on pre- and early-treatment dynamic enhanced MR (DCE-MRI) of the breast in predicting response to neoadjuvant therapy (NAT) in breast cancer and to construct a tool for early noninvasive prediction of NAT outcomes. Retrospective analysis of clinical and imaging data of 142 patients with primary invasive breast cancer who underwent DCE-MRI before and after two cycles of NAT at our institution. Enroled patients were randomly assigned in a 7:3 ratio to the training group and the test group. Patients were divided into pathological complete response (pCR) and non-pathological complete response groups based on surgical pathology findings after NAT. The maximum diameter relative regression values (Diameter%) before and after treatment were calculated and the conventional imaging Diameter% model was constructed. Based on pre- and early-NAT DCE-MRI, the optimal features of pre-NAT, early-NAT, and delta radiomics were screened using redundancy analysis, least absolute shrinkage, and selection operator methods to construct the corresponding radiomics model and calculate the Radscores. Indicators that were statistically significant in the univariate analysis of clinical data were further screened by stepwise regression and combined with Radscores to construct the fusion model. All models were evaluated and compared. In the test set, the area under the curve (AUC) of the delta radiomics model (0.87) was higher than that of the pre-NAT, early-NAT radiomics models (0.57, 0.78) and the Diameter% model (0.83). The fusion model had the best efficacy in predicting pCR after NAT, with AUCs of 0.91 in the training and test sets. And its nomogram plot showed that Radscore of early-NAT radiomics had the greatest weight. In the test set, the fusion model and Delta radiomics model improved the efficacy of predicting pCR by 35.56% and 14.19%, respectively, compared to the Diameter% model (P = 0 and .039). Clinical decision curves showed the highest overall clinical benefit for the fusion model. Radiomics, especially delta and early-NAT radiomics, may be potential biomarkers for early noninvasive prediction of NAT outcomes. And a fusion model constructed from meaningful clinicopathological indicators combined with radiomics can effectively predict NAT response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXRGXY完成签到 ,获得积分10
3秒前
saara发布了新的文献求助10
4秒前
两棵大白菜完成签到,获得积分10
5秒前
lina发布了新的文献求助10
5秒前
老实凝蕊发布了新的文献求助10
5秒前
dxm发布了新的文献求助10
5秒前
任南露完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助xiaoma采纳,获得10
7秒前
香蕉觅云应助yang采纳,获得10
8秒前
Yelly0420完成签到,获得积分10
8秒前
飞刀剑完成签到 ,获得积分10
8秒前
9秒前
9秒前
李爱国应助Chuwei采纳,获得10
9秒前
正直三颜完成签到,获得积分10
9秒前
玛雅太阳神完成签到,获得积分10
11秒前
现代的绿真完成签到,获得积分10
11秒前
研友_nxwN7L发布了新的文献求助10
12秒前
毕业发布了新的文献求助10
12秒前
13秒前
13秒前
善学以致用应助王彤采纳,获得30
13秒前
17秒前
颖南婉发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助50
17秒前
17秒前
彭于晏应助沉默红牛采纳,获得10
18秒前
suibiao发布了新的文献求助10
18秒前
18秒前
RJ完成签到,获得积分10
18秒前
accept完成签到,获得积分10
19秒前
20秒前
ding应助威武鸽子采纳,获得10
20秒前
无花果应助缥缈可乐采纳,获得10
20秒前
20秒前
21秒前
21秒前
yang发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950732
求助须知:如何正确求助?哪些是违规求助? 4213470
关于积分的说明 13104422
捐赠科研通 3995371
什么是DOI,文献DOI怎么找? 2186883
邀请新用户注册赠送积分活动 1202108
关于科研通互助平台的介绍 1115392