An interpretable machine learning model using multimodal pretreatment features predicts pathological complete response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma

作者
Xueping Wang,Wencheng Tan,Hui Sheng,Wenjun Zhou,Hailin Zheng,Kewei Huang,Jin‐Fei Lin,Songhe Guo,Minjie Mao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:16: 1660897-1660897
标识
DOI:10.3389/fimmu.2025.1660897
摘要

Background Although neoadjuvant immunochemotherapy (nICT) has revolutionized the management of locally advanced esophageal squamous cell carcinoma (ESCC), the inability to accurately predict pathological complete response (pCR) remains a major barrier to treatment personalization. We aimed to develop and validate an interpretable machine learning (ML) model using pretreatment multimodal features to predict pCR prior to nICT initiation. Methods In this retrospective study, 114 ESCC patients receiving nICT were randomly allocated into training (n=81) and validation (n=33) cohorts (7:3 ratio). Predictors of pCR were identified from pretreatment clinical variables, endoscopic ultrasonography, and hematological biomarkers via least absolute shrinkage and selection operator (LASSO) regression. Eight machine learning algorithms were implemented to construct prediction models. Model performance was assessed by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Shapley Additive Explanations (SHAP) provided feature importance and model interpretability. Results Following feature selection, 17 variables were incorporated into model construction. The Random Forest (RF) model demonstrated perfect discrimination in the training cohort (AUC = 1.000, sensitivity = 1.000, specificity = 1.000, PPV = 1.000, NPV = 1.000), while maintaining robust predictive ability in the independent validation cohort (AUC = 0.913, sensitivity = 0.733, specificity = 0.889, PPV = 0.846, NPV = 0.800). Decision curve analysis (DCA) confirmed favorable clinical utility. SHAP analysis identified alcohol consumption, circumferential involvement ≥50%, elevated neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), and alanine aminotransferase (ALT) as the key contributors to pCR prediction. Conclusions We established a clinically applicable, interpretable ML model that accurately predicts pCR to nICT in ESCC by integrating multimodal pretreatment data. This tool may optimize patient selection for nICT and advance precision therapy paradigms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助GT采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
脑洞疼应助qiuling采纳,获得10
3秒前
风语过完成签到,获得积分10
4秒前
HWS完成签到,获得积分10
4秒前
5秒前
Ning发布了新的文献求助20
6秒前
欢喜寻双完成签到 ,获得积分10
6秒前
9秒前
9秒前
10秒前
徐若楠完成签到,获得积分10
10秒前
一千根针完成签到 ,获得积分10
12秒前
12秒前
13秒前
Gstar完成签到,获得积分10
13秒前
Sea_U发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
姚姚发布了新的文献求助10
15秒前
林中白狼发布了新的文献求助10
15秒前
Ee关闭了Ee文献求助
17秒前
17秒前
无私的砖头完成签到 ,获得积分10
17秒前
18秒前
离殇online完成签到,获得积分10
18秒前
GT发布了新的文献求助10
19秒前
科研宝完成签到,获得积分10
19秒前
言无间完成签到,获得积分10
20秒前
20秒前
humorlife完成签到,获得积分10
21秒前
天真醉波完成签到 ,获得积分10
21秒前
自然的怜菡完成签到 ,获得积分10
22秒前
幸福的鑫鹏完成签到 ,获得积分10
22秒前
李健应助小伙子采纳,获得10
23秒前
广容发布了新的文献求助10
24秒前
25秒前
FashionBoy应助落雨采纳,获得10
25秒前
有魅力曼易完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574799
求助须知:如何正确求助?哪些是违规求助? 4660761
关于积分的说明 14732204
捐赠科研通 4600781
什么是DOI,文献DOI怎么找? 2525042
邀请新用户注册赠送积分活动 1495281
关于科研通互助平台的介绍 1465052