Pathology-Guided AI System for Accurate Segmentation and Diagnosis of Cervical Spondylosis

分割 颈椎病 计算机科学 Sørensen–骰子系数 医学影像学 人工智能 图像分割 模式识别(心理学) 颈椎 磁共振成像 放射科 医学 解剖 病理 替代医学
作者
Qi Zhang,Xiuyuan Chen,Ziyi He,Lian‐Ming Wu,Kun Wang,Jianqi Sun,Hongxing Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2025.3598469
摘要

Cervical spondylosis, a complex and prevalent condition, demands precise and efficient diagnostic techniques for accurate assessment. While MRI offers detailed visualization of cervical spine anatomy, manual interpretation remains labor-intensive and prone to error. To address this, we developed an innovative AI-assisted Expert-based Diagnosis System that automates both segmentation and diagnosis of cervical spondylosis using MRI. Leveraging multi-center datasets of cervical MRI images from patients with cervical spondylosis, our system features a pathology-guided segmentation model capable of accurately segmenting key cervical anatomical structures. The segmentation is followed by an expert-based diagnostic framework that automates the calculation of critical clinical indicators. Our segmentation model achieved an impressive average Dice coefficient exceeding 0.90 across four cervical spinal anatomies and demonstrated enhanced accuracy in herniation areas. Diagnostic evaluation further showcased the system's precision, with the lowest mean average errors (MAE) for the C2-C7 Cobb angle and the Maximum Spinal Cord Compression (MSCC) coefficient. In addition, our method delivered high accuracy, precision, recall, and F1 scores in herniation localization, K-line status assessment, T2 hyperintensity detection, and Kang grading. Comparative analysis and external validation demonstrate that our system outperforms existing methods, establishing a new benchmark for segmentation and diagnostic tasks for cervical spondylosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XJ完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
nzsqaq发布了新的文献求助10
3秒前
3秒前
所所应助雪碧采纳,获得10
4秒前
友好的灯泡完成签到,获得积分10
5秒前
Lucas应助谢书南采纳,获得10
5秒前
Jolene完成签到,获得积分10
5秒前
6秒前
6秒前
暮霭沉沉完成签到,获得积分0
6秒前
博修发布了新的文献求助10
7秒前
酷波er应助nzsqaq采纳,获得10
8秒前
Nini发布了新的文献求助30
9秒前
研友_VZG7GZ应助研友_Ze2k48采纳,获得10
9秒前
魔幻毛豆发布了新的文献求助20
10秒前
Lin.隽发布了新的文献求助10
10秒前
Yvette2024发布了新的文献求助10
12秒前
香蕉孤风完成签到,获得积分10
12秒前
zhaimen完成签到 ,获得积分10
13秒前
nzsqaq完成签到,获得积分20
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
核桃发布了新的文献求助30
19秒前
19秒前
19秒前
19秒前
21秒前
满意溪流发布了新的文献求助30
22秒前
易槐发布了新的文献求助10
22秒前
羽客完成签到,获得积分10
22秒前
23秒前
23秒前
善学以致用应助天天采纳,获得10
23秒前
红旗招展应助DADADADAD采纳,获得10
23秒前
23秒前
楚寅发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4282207
求助须知:如何正确求助?哪些是违规求助? 3810365
关于积分的说明 11935820
捐赠科研通 3456893
什么是DOI,文献DOI怎么找? 1895800
邀请新用户注册赠送积分活动 944826
科研通“疑难数据库(出版商)”最低求助积分说明 848574