A machine learning-based decision support system for temporal human cognitive state estimation during online education using wearable physiological monitoring devices

机器学习 支持向量机 计算机科学 人工智能 可穿戴计算机 人气 会话(web分析) 脑电图 过程(计算) 心理学 万维网 社会心理学 操作系统 精神科 嵌入式系统
作者
Swadha Gupta,Parteek Kumar,Rajkumar Tekchandani
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:8: 100280-100280 被引量:2
标识
DOI:10.1016/j.dajour.2023.100280
摘要

Over the last decade, there has been a considerable increase in the popularity of online education. As a result, the online learning or e-learning industry has flourished, providing benefits to students, learners, educators, and education experts. Despite the advantages of e-learning, it also has its drawbacks. While e-learning enables students to access the learning materials at their convenience from any location, one of the significant challenges is the lack of monitoring of their level of attention during e-learning sessions. It is challenging to ascertain whether a student is actively engaged in the learning process. To address this issue, we have proposed a decision support system (DSS) based on wearable physiological sensor signals (i.e., Electroencephalogram (EEG) signals) that can inform the instructor whether a student is attentive. For developing DSS, we recorded an EEG-based dataset using a neurosky device, and 100 individuals participated in the study. The learning state is divided into two categories: attentive and inattentive. In this paper, machine learning techniques are employed to integrate the proposed DSS, which can predict, analyze, and validate the student's level of attention or inattention throughout the e-learning session. The findings show that the Support Vector Machine (SVM) approach is the most efficient method for attention prediction, achieving an accuracy of 91.68% compared to logistic regression and ridge regression. Additionally, we examined the frequency bands that were most significant in predicting the learning state, with beta and alpha waves being identified as the key contributors in predicting attention. To further evaluate the data, we use K-means and Hierarchical algorithms to cluster beta and alpha data points. K-means effectively identifies an ideal representative of an attentive or inattentive state. Thus, EEG waves can effectively reveal whether a student is attentive during real-time e-learning sessions, providing a promising approach for providing a valuable tool for decision support in the E-Learning Environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的飞风完成签到 ,获得积分10
刚刚
5秒前
6秒前
852应助jxx采纳,获得10
7秒前
8秒前
神勇的若灵完成签到,获得积分10
8秒前
527完成签到,获得积分10
10秒前
YY发布了新的文献求助10
10秒前
11秒前
13秒前
安安发布了新的文献求助10
15秒前
Vicky完成签到,获得积分10
15秒前
科研通AI5应助Bressanone采纳,获得10
16秒前
英姑应助YY采纳,获得10
17秒前
淡墨完成签到,获得积分10
17秒前
慕青应助zs采纳,获得10
20秒前
20秒前
星辰大海应助有魅力的井采纳,获得30
22秒前
酷波er应助安安采纳,获得10
23秒前
27秒前
Air云完成签到,获得积分10
29秒前
30秒前
小小完成签到,获得积分10
30秒前
31秒前
无足鸟完成签到,获得积分10
31秒前
32秒前
kwen完成签到 ,获得积分10
33秒前
racill发布了新的文献求助20
34秒前
35秒前
zs发布了新的文献求助10
36秒前
怡然冷安完成签到,获得积分10
38秒前
斯文败类应助萤火虫采纳,获得10
44秒前
无奈的豆沙包完成签到 ,获得积分10
45秒前
科研通AI2S应助qfby采纳,获得10
48秒前
SeliqAq完成签到,获得积分10
48秒前
邓德亨卓汲完成签到,获得积分10
49秒前
He发布了新的文献求助10
50秒前
50秒前
zs完成签到,获得积分10
51秒前
今后应助wdb采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808