亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MVSF-AB: Accurate antibody-antigen binding affinity prediction via multi-view sequence feature learning

抗原 计算机科学 抗体 特征(语言学) 序列(生物学) 计算生物学 源代码 人工智能 化学 生物 免疫学 生物化学 程序设计语言 语言学 哲学
作者
Minghui Li,Yao Shi,Shengqing Hu,Shengshan Hu,Peijin Guo,Wei Wan,Leo Yu Zhang,Shirui Pan,Jizhou Li,Lichao Sun,Xiaoli Lan
出处
期刊:Bioinformatics [Oxford University Press]
被引量:1
标识
DOI:10.1093/bioinformatics/btae579
摘要

Abstract Motivation Predicting the binding affinity between antigens and antibodies accurately is crucial for assessing therapeutic antibody effectiveness and enhancing antibody engineering and vaccine design. Traditional machine learning methods have been widely used for this purpose, relying on interfacial amino acids’ structural information. Nevertheless, due to technological limitations and high costs of acquiring structural data, the structures of most antigens and antibodies are unknown, and sequence-based methods have gained attention. Existing sequence-based approaches designed for protein-protein affinity prediction exhibit a significant drop in performance when applied directly to antibody-antigen affinity prediction due to imbalanced training data and lacking design in the model framework specifically for antibody-antigen, hindering the learning of key features of antibodies and antigens. Therefore, we propose MVSF-AB, a Multi-View Sequence Feature learning for accurate Antibody-antigen Binding affinity prediction. Results MVSF-AB designs a multi-view method that fuses semantic features and residue features to fully utilize the sequence information of antibody-antigen and predicts the binding affinity. Experimental results demonstrate that MVSF-AB outperforms existing approaches in predicting unobserved natural antibody-antigen affinity and maintains its effectiveness when faced with mutant strains of antibodies. Availability and implementation Datasets we used and source code are available on our public GitHub repository https://github.com/TAI-Medical-Lab/MVSF-AB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lanxinge完成签到 ,获得积分10
17秒前
21秒前
cornelialkx发布了新的文献求助10
28秒前
32秒前
32秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
36秒前
36秒前
36秒前
36秒前
cornelialkx完成签到,获得积分20
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264