已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiparametric MRI Radiomics With Machine Learning for Differentiating HER2-Zero, -Low, and -Positive Breast Cancer: Model Development, Testing, and Interpretability Analysis

医学 可解释性 无线电技术 乳腺癌 人工智能 医学物理学 机器学习 癌症 放射科 内科学 计算机科学
作者
Yongxin Chen,Si–Yi Chen,Wenjie Tang,Qingcong Kong,Zhidan Zhong,Xiaomeng Yu,Yi Sui,Wenke Hu,Xinqing Jiang,Yuan Guo
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:224 (1) 被引量:4
标识
DOI:10.2214/ajr.24.31717
摘要

BACKGROUND. MRI radiomics has been explored for three-tiered classification of HER2 expression levels (i.e., HER2-zero, HER2-low, or HER2-positive) in patients with breast cancer, although an understanding of how such models reach their predictions is lacking. OBJECTIVE. The purpose of this study was to develop and test multiparametric MRI radiomics machine learning models for differentiating three-tiered HER2 expression levels in patients with breast cancer, as well as to explain the contributions of model features through local and global interpretations with the use of Shapley additive explanation (SHAP) analysis. METHODS. This retrospective study included 737 patients (mean age, 54.1 ± 10.6 [SD] years) with breast cancer from two centers (center 1 [n = 578] and center 2 [n = 159]), all of whom underwent multiparametric breast MRI and had HER2 expression determined after excisional biopsy. Analysis entailed two tasks: differentiating HER2-negative (i.e., HER2-zero or HER2-low) tumors from HER2-positive tumors (task 1) and differentiating HER2-zero tumors from HER2-low tumors (task 2). For each task, patients from center 1 were randomly assigned in a 7:3 ratio to a training set (task 1: n = 405; task 2: n = 284) or an internal test set (task 1: n = 173; task 2: n = 122); patients from center 2 formed an external test set (task 1: n = 159; task 2: n = 105). Radiomic features were extracted from early phase dynamic contrast-enhanced (DCE) imaging, T2-weighted imaging, and DWI. For each task, a support vector machine (SVM) was used for feature selection, a multiparametric radiomics score (radscore) was computed using feature weights from SVM correlation coefficients, conventional MRI and combined models were constructed, and model performances were evaluated. SHAP analysis was used to provide local and global interpretations of the model outputs. RESULTS. In the external test set, for task 1, AUCs for the conventional MRI model, radscore, and the combined model were 0.624, 0.757, and 0.762, respectively; for task 2, the AUC for radscore was 0.754, and no conventional MRI model or combined model could be constructed. SHAP analysis identified early phase DCE imaging features as having the strongest influence for both tasks; T2-weighted imaging features also had a prominent role for task 2. CONCLUSION. The findings indicate suboptimal performance of MRI radiomics models for noninvasive characterization of HER2 expression. CLINICAL IMPACT. The study provides an example of the use of SHAP interpretation analysis to better understand predictions of imaging-based machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜特乐完成签到,获得积分10
1秒前
阿四辣酱完成签到,获得积分10
2秒前
5秒前
山火发布了新的文献求助10
5秒前
Jeffery发布了新的文献求助10
10秒前
zx完成签到,获得积分10
12秒前
华仔应助山火采纳,获得10
15秒前
直率的钢铁侠完成签到,获得积分10
16秒前
17秒前
iNk应助可爱的彩虹采纳,获得20
19秒前
20秒前
CipherSage应助小巧的可仁采纳,获得10
20秒前
科研通AI5应助小巧的可仁采纳,获得10
20秒前
20秒前
20秒前
jrxjzy完成签到 ,获得积分10
20秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得30
21秒前
liuliuliu完成签到 ,获得积分10
21秒前
科研通AI5应助健忘幻儿采纳,获得10
24秒前
麦克完成签到,获得积分10
24秒前
王森发布了新的文献求助10
27秒前
28秒前
ick558完成签到,获得积分10
29秒前
29秒前
王森完成签到,获得积分20
33秒前
点点发布了新的文献求助10
34秒前
38秒前
现代的擎苍完成签到,获得积分10
45秒前
46秒前
耐斯糖完成签到 ,获得积分10
47秒前
48秒前
dandna完成签到 ,获得积分10
49秒前
1分钟前
清爽冰露完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324680
关于积分的说明 10219180
捐赠科研通 3039653
什么是DOI,文献DOI怎么找? 1668358
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467