亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiparametric MRI Radiomics With Machine Learning for Differentiating HER2-Zero, -Low, and -Positive Breast Cancer: Model Development, Testing, and Interpretability Analysis

医学 可解释性 无线电技术 乳腺癌 人工智能 医学物理学 机器学习 癌症 放射科 内科学 计算机科学
作者
Yongxin Chen,Si–Yi Chen,Wenjie Tang,Qingcong Kong,Zhidan Zhong,Xiaomeng Yu,Yi Sui,Wenke Hu,Xinqing Jiang,Yuan Guo
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:224 (1) 被引量:5
标识
DOI:10.2214/ajr.24.31717
摘要

BACKGROUND. MRI radiomics has been explored for three-tiered classification of HER2 expression levels (i.e., HER2-zero, HER2-low, or HER2-positive) in patients with breast cancer, although an understanding of how such models reach their predictions is lacking. OBJECTIVE. The purpose of this study was to develop and test multiparametric MRI radiomics machine learning models for differentiating three-tiered HER2 expression levels in patients with breast cancer, as well as to explain the contributions of model features through local and global interpretations with the use of Shapley additive explanation (SHAP) analysis. METHODS. This retrospective study included 737 patients (mean age, 54.1 ± 10.6 [SD] years) with breast cancer from two centers (center 1 [n = 578] and center 2 [n = 159]), all of whom underwent multiparametric breast MRI and had HER2 expression determined after excisional biopsy. Analysis entailed two tasks: differentiating HER2-negative (i.e., HER2-zero or HER2-low) tumors from HER2-positive tumors (task 1) and differentiating HER2-zero tumors from HER2-low tumors (task 2). For each task, patients from center 1 were randomly assigned in a 7:3 ratio to a training set (task 1: n = 405; task 2: n = 284) or an internal test set (task 1: n = 173; task 2: n = 122); patients from center 2 formed an external test set (task 1: n = 159; task 2: n = 105). Radiomic features were extracted from early phase dynamic contrast-enhanced (DCE) imaging, T2-weighted imaging, and DWI. For each task, a support vector machine (SVM) was used for feature selection, a multiparametric radiomics score (radscore) was computed using feature weights from SVM correlation coefficients, conventional MRI and combined models were constructed, and model performances were evaluated. SHAP analysis was used to provide local and global interpretations of the model outputs. RESULTS. In the external test set, for task 1, AUCs for the conventional MRI model, radscore, and the combined model were 0.624, 0.757, and 0.762, respectively; for task 2, the AUC for radscore was 0.754, and no conventional MRI model or combined model could be constructed. SHAP analysis identified early phase DCE imaging features as having the strongest influence for both tasks; T2-weighted imaging features also had a prominent role for task 2. CONCLUSION. The findings indicate suboptimal performance of MRI radiomics models for noninvasive characterization of HER2 expression. CLINICAL IMPACT. The study provides an example of the use of SHAP interpretation analysis to better understand predictions of imaging-based machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
31秒前
小仙女应助科研通管家采纳,获得10
31秒前
Yolenders完成签到 ,获得积分10
47秒前
1分钟前
CodeCraft应助天黑不打烊采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
yyywwwddd333发布了新的文献求助10
1分钟前
jianwuzhou发布了新的文献求助30
1分钟前
1分钟前
Dana-Lin应助yyywwwddd333采纳,获得10
2分钟前
在水一方应助yyywwwddd333采纳,获得30
2分钟前
rrrrrrry发布了新的文献求助10
2分钟前
小仙女应助科研通管家采纳,获得50
2分钟前
Yini完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
33应助RIPCCCP采纳,获得10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
Hiraeth完成签到 ,获得积分10
4分钟前
4分钟前
拾柒发布了新的文献求助10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
Lynn发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
bkagyin应助派派采纳,获得10
4分钟前
4分钟前
派派完成签到,获得积分20
5分钟前
5分钟前
派派发布了新的文献求助10
5分钟前
Lynn完成签到,获得积分20
5分钟前
6分钟前
Tim发布了新的文献求助10
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
山山完成签到 ,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910395
求助须知:如何正确求助?哪些是违规求助? 3455956
关于积分的说明 10886739
捐赠科研通 3182054
什么是DOI,文献DOI怎么找? 1758777
邀请新用户注册赠送积分活动 850770
科研通“疑难数据库(出版商)”最低求助积分说明 792218