Numerical virtual flight investigation for longitudinal maneuver of a generic fighter based on machine learning

推力 空气动力学 电梯 计算流体力学 计算机科学 控制理论(社会学) 航空航天工程 空气动力 物理 人工智能 工程类 控制(管理)
作者
Lang Yan,Xinghua Chang,Nianhua Wang,Laiping Zhang,Wei Liu,Xiaogang Deng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7)
标识
DOI:10.1063/5.0208437
摘要

Coupled with computational fluid dynamics (CFD), rigid body dynamics (RBD), and flight control system, the numerical virtual flight (NVF) technology can simulate the maneuvering flight process of an air vehicle under control. In this paper, the NVF investigation of longitudinal maneuvers with elevator and thrust vector control is performed for a generic fighter configuration. The rigid dynamic hybrid grid method is taken to realize the motion of the fighter, and the overlapping moving grid technology meets the deflection of the elevator. The Reynolds-averaged Navier–Stokes equations in arbitrary Lagrangian–Eulerian form are coupled with the RBD equations to solve aerodynamics and kinematics problems, while flight control is achieved through an advanced machine learning method. First, the fighter is forced to pitch with the periodic deflection of the elevator, and the unsteady computation is carried out to obtain aerodynamic data. Then, an artificial neural network (ANN) is adopted for aerodynamic identification and modeling, which involves establishing a model between the aerodynamic coefficient and pitching motion parameters. Afterward, the ANN-based NVF is implemented on the basis of the established model and deep reinforcement learning (DRL) is used to design the pitching control law of the fighter. The NVF results based on ANN show that the fighter has a good control effect under the action of the elevator, elevator with open-loop thrust vector, and elevator with closed-loop thrust vector, respectively, as well as the results from the CFD-based NVF system. Finally, the three-degree-of-freedom NVF based on CFD also indicates that the control law designed through DRL has good generalization characteristics. This study demonstrates the potential prospects of machine learning methods in the design and research for a novel generation of air vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的羊完成签到 ,获得积分10
刚刚
fff发布了新的文献求助10
1秒前
科研通AI6应助乖猫要努力采纳,获得10
2秒前
GG完成签到,获得积分10
2秒前
李健的小迷弟应助hitdsh采纳,获得10
2秒前
3秒前
紧张的三问完成签到,获得积分10
3秒前
粗犷的雁玉完成签到,获得积分10
4秒前
刘忙发布了新的文献求助20
6秒前
Pluto完成签到,获得积分10
6秒前
asf发布了新的文献求助30
7秒前
7秒前
primary关注了科研通微信公众号
8秒前
8秒前
9秒前
10秒前
Hale完成签到,获得积分0
10秒前
11秒前
一111发布了新的文献求助10
11秒前
jokery完成签到,获得积分10
11秒前
领导范儿应助活泼芷文采纳,获得10
13秒前
13秒前
13秒前
14秒前
千帆发布了新的文献求助10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
asf完成签到,获得积分10
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
meimei发布了新的文献求助10
16秒前
思源应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
TTTHANKS完成签到 ,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580235
求助须知:如何正确求助?哪些是违规求助? 3998358
关于积分的说明 12378721
捐赠科研通 3672746
什么是DOI,文献DOI怎么找? 2024076
邀请新用户注册赠送积分活动 1058189
科研通“疑难数据库(出版商)”最低求助积分说明 944946