Deep‐learning‐based automatic evaluation of rice seed germination rate

发芽 卷积神经网络 农学 人工智能 作物 生物 计算机科学 数学
作者
Jinfeng Zhao,Yan Ma,Kaicheng Yong,Min Zhu,Yueqi Wang,Zhaowei Luo,Xin Wei,Xuehui Huang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:103 (4): 1912-1924 被引量:23
标识
DOI:10.1002/jsfa.12318
摘要

Rice is an important food crop plant in the world and is also a model plant for genetics and breeding research. The germination rate is an important indicator that measures the performance of rice seeds. Currently, solutions involving image processing techniques have substantial challenges in the identification of seed germination. The detection of rice seed germination without human intervention involves challenges because the rice seeds are small and densely distributed.In this article, we develop a convolutional neural network (YOLO-r) that can detect the germination status of rice seeds and automatically evaluate the total number of germinations. Image partition, the Transformer encoder, a small target detection layer, and CDIoU loss are exploited in YOLO-r to improve the detection accuracy. A total of 21 429 seeds were collected, which have different phenotypic characteristics in length, shape, and color. The results show that the mean average precision of YOLO-r is 0.9539, which is higher than the compared models. Moreover, the average detection time per image of YOLO-r was 0.011 s, which meets the real-time requirements. The experimental results demonstrate that YOLO-r is robust to complex situations such as water stains, impurities, awns, adhesion, and so on. The results also show that the mean absolute error of the predicted germination rate mainly exists within 0.1.Numerous experimental studies have demonstrated that YOLO-r can predict rice germination rate in a fast, easy, and accurate manner. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘111发布了新的文献求助10
2秒前
阿卓卓宇宙最可爱完成签到 ,获得积分10
3秒前
坚强莺发布了新的文献求助20
3秒前
Zero140发布了新的文献求助100
6秒前
9秒前
挑片岛屿完成签到,获得积分20
9秒前
上官若男应助嘉幸的采纳,获得10
12秒前
烟花应助执源星采纳,获得10
12秒前
挑片岛屿发布了新的文献求助30
13秒前
爆米花应助Nathan采纳,获得10
14秒前
lant0932发布了新的文献求助10
14秒前
HEIKU应助Zero140采纳,获得10
14秒前
可爱的函函应助Tan采纳,获得10
15秒前
自觉大碗完成签到,获得积分10
15秒前
yxdjzwx完成签到,获得积分10
15秒前
zee完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
可莉完成签到 ,获得积分10
17秒前
rebubu完成签到 ,获得积分10
21秒前
耿大海完成签到,获得积分10
25秒前
路茄完成签到,获得积分10
28秒前
28秒前
29秒前
贪玩丸子完成签到 ,获得积分10
29秒前
30秒前
知足的憨人*-*完成签到,获得积分10
31秒前
执源星发布了新的文献求助10
32秒前
思源应助jiaojiao采纳,获得10
32秒前
lxr发布了新的文献求助20
32秒前
mengzhonghunli完成签到,获得积分10
33秒前
34秒前
36秒前
nenoaowu发布了新的文献求助10
36秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
小轩窗zst完成签到,获得积分10
39秒前
MarvelerYB3完成签到,获得积分10
39秒前
NSK完成签到,获得积分10
40秒前
学习完成签到,获得积分10
41秒前
星辰大海应助nenoaowu采纳,获得10
41秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865390
求助须知:如何正确求助?哪些是违规求助? 3407686
关于积分的说明 10655469
捐赠科研通 3131809
什么是DOI,文献DOI怎么找? 1727297
邀请新用户注册赠送积分活动 832240
科研通“疑难数据库(出版商)”最低求助积分说明 780189