清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction-Based Path Planning for Safe and Efficient Human–Robot Collaboration in Construction via Deep Reinforcement Learning

强化学习 工作区 运动规划 计算机科学 机器人学 机器人 人工智能 路径(计算) 工程类 模拟 实时计算 计算机网络
作者
Jiannan Cai,Ao Du,Xiaoyun Liang,Shuai Li
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (1) 被引量:42
标识
DOI:10.1061/(asce)cp.1943-5487.0001056
摘要

Robotics has attracted broad attention as an emerging technology in construction to help workers with repetitive, physically demanding, and dangerous tasks, thus improving productivity and safety. Under the new era of human–robot coexistence and collaboration in dynamic and complex workspaces, it is critical for robots to navigate to the targets efficiently without colliding with moving workers. This study proposes a new deep reinforcement learning (DRL)–based robot path planning method that integrates the predicted movements of construction workers to achieve safe and efficient human–robot collaboration in construction. First, an uncertainty-aware long short-term memory network is developed to predict the movements of construction workers and associated uncertainties. Second, a DRL framework is formulated, where predicted movements of construction workers are innovatively integrated into the state space and the computation of the reward function. By incorporating predicted trajectories in addition to current locations, the proposed method enables proactive planning such that the robot could better adapt to human movements, thus ensuring both safety and efficiency. The proposed method was demonstrated and evaluated using simulations generated based on real construction scenarios. The results show that prediction-based DRL path planning achieved a 100% success rate (with a total of 10,000 episodes) for robots to achieve the destination along the near-shortest path. Furthermore, it reduced the collision rate with moving workers by 23% compared with the conventional DRL method, which does not consider predicted information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
勤恳凡儿发布了新的文献求助10
11秒前
53秒前
烟花应助科研通管家采纳,获得10
54秒前
54秒前
顾矜应助科研通管家采纳,获得10
54秒前
1分钟前
1分钟前
早点吃饭发布了新的文献求助10
1分钟前
Orange应助早点吃饭采纳,获得10
1分钟前
1分钟前
2分钟前
韩寒完成签到 ,获得积分10
2分钟前
早点吃饭发布了新的文献求助10
2分钟前
早点吃饭完成签到,获得积分10
2分钟前
poki完成签到 ,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
crown发布了新的文献求助10
3分钟前
范白容完成签到 ,获得积分0
3分钟前
crown完成签到,获得积分10
3分钟前
Binbin完成签到 ,获得积分10
3分钟前
kingcoffee完成签到 ,获得积分10
3分钟前
蒲蒲完成签到 ,获得积分10
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
binyao2024完成签到,获得积分10
5分钟前
木乙完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
澜生完成签到 ,获得积分10
6分钟前
Barid完成签到,获得积分10
6分钟前
大米小米锅锅完成签到 ,获得积分10
6分钟前
wujiwuhui完成签到 ,获得积分10
6分钟前
烟花应助科研通管家采纳,获得10
6分钟前
orixero应助科研通管家采纳,获得10
6分钟前
平常的毛豆应助Ana采纳,获得30
7分钟前
稻子完成签到 ,获得积分10
7分钟前
无悔完成签到 ,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468