Abdomen CT multi‐organ segmentation using token‐based MLP‐Mixer

人工智能 计算机科学 卷积神经网络 分割 深度学习 模式识别(心理学) 块(置换群论) 轮廓 特征(语言学) 图像分割 计算机视觉 数学 几何学 语言学 计算机图形学(图像) 哲学
作者
Shaoyan Pan,Chih‐Wei Chang,Tonghe Wang,Jacob Wynne,Mingzhe Hu,Yang Lei,Tian Liu,Pretesh Patel,Justin Roper,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3027-3038 被引量:21
标识
DOI:10.1002/mp.16135
摘要

Abstract Background Manual contouring is very labor‐intensive, time‐consuming, and subject to intra‐ and inter‐observer variability. An automated deep learning approach to fast and accurate contouring and segmentation is desirable during radiotherapy treatment planning. Purpose This work investigates an efficient deep‐learning‐based segmentation algorithm in abdomen computed tomography (CT) to facilitate radiation treatment planning. Methods In this work, we propose a novel deep‐learning model utilizing U‐shaped multi‐layer perceptron mixer (MLP‐Mixer) and convolutional neural network (CNN) for multi‐organ segmentation in abdomen CT images. The proposed model has a similar structure to V‐net, while a proposed MLP‐Convolutional block replaces each convolutional block. The MLP‐Convolutional block consists of three components: an early convolutional block for local features extraction and feature resampling, a token‐based MLP‐Mixer layer for capturing global features with high efficiency, and a token projector for pixel‐level detail recovery. We evaluate our proposed network using: (1) an institutional dataset with 60 patient cases and (2) a public dataset (BCTV) with 30 patient cases. The network performance was quantitatively evaluated in three domains: (1) volume similarity between the ground truth contours and the network predictions using the Dice score coefficient (DSC), sensitivity, and precision; (2) surface similarity using Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMS); and (3) the computational complexity reported by the number of network parameters, training time, and inference time. The performance of the proposed network is compared with other state‐of‐the‐art networks. Results In the institutional dataset, the proposed network achieved the following volume similarity measures when averaged over all organs: DSC = 0.912, sensitivity = 0.917, precision = 0.917, average surface similarities were HD = 11.95 mm, MSD = 1.90 mm, RMS = 3.86 mm. The proposed network achieved DSC = 0.786 and HD = 9.04 mm on the public dataset. The network also shows statistically significant improvement, which is evaluated by a two‐tailed Wilcoxon Mann–Whitney U test, on right lung (MSD where the maximum p ‐value is 0.001), spinal cord (sensitivity, precision, HD, RMSD where p ‐value ranges from 0.001 to 0.039), and stomach (DSC where the maximum p ‐value is 0.01) over all other competing networks. On the public dataset, the network report statistically significant improvement, which is shown by the Wilcoxon Mann–Whitney test, on pancreas (HD where the maximum p ‐value is 0.006), left (HD where the maximum p ‐value is 0.022) and right adrenal glands (DSC where the maximum p ‐value is 0.026). In both datasets, the proposed method can generate contours in less than 5 s. Overall, the proposed MLP‐Vnet demonstrates comparable or better performance than competing methods with much lower memory complexity and higher speed. Conclusions The proposed MLP‐Vnet demonstrates superior segmentation performance, in terms of accuracy and efficiency, relative to state‐of‐the‐art methods. This reliable and efficient method demonstrates potential to streamline clinical workflows in abdominal radiotherapy, which may be especially important for online adaptive treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就拒绝内耗完成签到,获得积分20
刚刚
SciGPT应助小陈1122采纳,获得10
1秒前
追寻梦之完成签到 ,获得积分10
1秒前
dlexdn发布了新的文献求助10
2秒前
邵启轩发布了新的文献求助10
2秒前
哈哈王完成签到,获得积分10
5秒前
6秒前
139完成签到 ,获得积分0
6秒前
独特雪晴发布了新的文献求助10
8秒前
Hello应助WF采纳,获得10
9秒前
我是老大应助stoneff612采纳,获得10
9秒前
dlexdn完成签到,获得积分20
9秒前
积极书双发布了新的文献求助10
10秒前
10秒前
ranjeah完成签到 ,获得积分10
11秒前
12秒前
maiyatangmei完成签到,获得积分10
12秒前
顺利向雁完成签到,获得积分20
13秒前
一个兴趣使然的人完成签到,获得积分10
13秒前
酥小苏完成签到,获得积分10
14秒前
小陈1122发布了新的文献求助10
14秒前
AQI完成签到,获得积分10
14秒前
xixi完成签到 ,获得积分10
16秒前
李清湛发布了新的文献求助10
17秒前
zhenggc发布了新的文献求助10
17秒前
酷波er应助dlexdn采纳,获得10
17秒前
852应助独特雪晴采纳,获得10
21秒前
26秒前
28秒前
享音发布了新的文献求助10
30秒前
31秒前
闪闪的河马完成签到,获得积分10
32秒前
stoneff612发布了新的文献求助10
32秒前
啾栖发布了新的文献求助10
32秒前
34秒前
奋斗慕凝发布了新的文献求助10
34秒前
兴奋冬日发布了新的文献求助10
35秒前
曾许人间第一流完成签到,获得积分10
36秒前
兔子不爱吃胡萝卜完成签到,获得积分10
40秒前
慕青应助顺心冰枫采纳,获得10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132512
求助须知:如何正确求助?哪些是违规求助? 3669181
关于积分的说明 11603503
捐赠科研通 3366193
什么是DOI,文献DOI怎么找? 1849371
邀请新用户注册赠送积分活动 913050
科研通“疑难数据库(出版商)”最低求助积分说明 828413