Predictive model of employee attrition based on stacking ensemble learning

损耗 计算机科学 国际商用机器公司 二元分析 旷工 预测分析 逻辑回归 工作满意度 机器学习 运营管理 心理学 工程类 医学 材料科学 牙科 纳米技术 社会心理学
作者
Doohee Chung,Jinseop Yun,Jeha Lee,Yeram Jeon
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119364-119364 被引量:35
标识
DOI:10.1016/j.eswa.2022.119364
摘要

Since human resource is the most important resource of a company, employee attrition is an important agenda from the company's point of view. However, employee attrition occurs due to various reasons, and it is difficult for the HR manager or the leader of each department to know these signs in advance. Employee attrition results in considerable burdens and losses of the organization due to a variety of reasons such as interruption of ongoing tasks, cost of employee re-employment and retraining, and risk of leaking core technologies and know-hows. Therefore, in this study, we propose a model for predicting employee attrition so that we can take measures for talent management which in the past, has been carried out ex post. In this study, a predictive model was constructed based on 30 variables - that affect employee attrition - from the 'IBM HR Analytics Employee Attrition & Performance data', which consists of 1,470 records. To this end, a total of eight predictive models, including Logistic Regression, Random Forest, XGBoost, SVM, Artificial Neural Network model and ensemble model, were built and their performance was evaluated. In addition, when the impact of variables on employee attrition was analyzed, variables such as environmental satisfaction, overtime work, and relationship satisfaction were found to be the biggest contributors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小狗完成签到,获得积分10
刚刚
爱大美完成签到,获得积分10
刚刚
悦耳的雨兰完成签到,获得积分10
3秒前
5秒前
jmy1995发布了新的文献求助10
5秒前
yang完成签到,获得积分10
6秒前
大模型应助子慕i采纳,获得10
7秒前
8秒前
9秒前
氟锑酸发布了新的文献求助10
11秒前
稳重的无色完成签到,获得积分10
12秒前
12秒前
14秒前
Rainnnn发布了新的文献求助10
16秒前
深情安青应助Ari_Kun采纳,获得10
16秒前
17秒前
科研通AI2S应助Rjy采纳,获得10
18秒前
lululu发布了新的文献求助10
18秒前
myp完成签到,获得积分10
19秒前
晓宇发布了新的文献求助10
20秒前
爆米花应助精明元霜采纳,获得10
20秒前
惠小之发布了新的文献求助30
21秒前
21秒前
fletmer完成签到,获得积分20
21秒前
菠萝完成签到 ,获得积分10
21秒前
文艺谷蓝完成签到,获得积分10
22秒前
温暖芸发布了新的文献求助10
23秒前
hamster发布了新的文献求助10
24秒前
24秒前
24秒前
小吴完成签到 ,获得积分10
26秒前
Jgogo完成签到,获得积分10
26秒前
28秒前
Jgogo发布了新的文献求助10
29秒前
29秒前
wangyue1995发布了新的文献求助10
30秒前
一路狂奔等不了完成签到 ,获得积分10
30秒前
jenningseastera应助晓宇采纳,获得10
31秒前
hamster完成签到,获得积分10
32秒前
小杨医生发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241