Development and validation of a tool incorporating cervical length and quantitative fetal fibronectin to predict spontaneous preterm birth in asymptomatic high‐risk women

胎儿纤维连接蛋白 医学 无症状的 产科 胎儿 妇科 早产 怀孕 内科学 遗传学 生物
作者
Katy Kuhrt,E. Smout,Natasha L. Hezelgrave,Paul T. Seed,Jenny Carter,Andrew Shennan
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:47 (1): 104-109 被引量:72
标识
DOI:10.1002/uog.14865
摘要

To develop a predictive tool for spontaneous preterm birth (sPTB) in asymptomatic high-risk women that includes quantification of fetal fibronectin (fFN) along with cervical length (CL) measurement and other clinical factors.Data were analyzed that had been collected prospectively from 1249 women at high risk for sPTB attending preterm surveillance clinics. Clinicians were blinded to quantitative measurements of fFN (qfFN), although they were aware of qualitative fFN results. Parametric survival models for sPTB, with time-updated covariates, were developed and the best was selected using the Akaike and Bayesian information criteria. The model was developed on the first 624 consecutive women and validated on the subsequent 625. Fractional polynomials were used to accommodate possible non-linear effects of qfFN and CL. The estimated probability of delivery before 30, 34 or 37 weeks' gestation and within 2 or 4 weeks of testing was calculated for each patient and analyzed as a predictive test for the actual occurrence of each event. Predictive statistics were calculated to compare training and validation sets.The final model that was selected used a log-normal survival curve with CL, √qfFN and previous sPTB/preterm prelabor rupture of membranes as predictors. Predictive statistics were similar for training and validation sets. Areas under the receiver-operating characteristics curves ranged from 0.77 to 0.99, indicating accurate prediction across all five delivery outcomes.sPTB in high-risk asymptomatic women can be predicted accurately using a model combining qfFN and CL, which supersedes the single-threshold fFN test, demographic information and obstetric history. This algorithm has been incorporated into an App (QUiPP) for widespread use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注大白菜真实的钥匙完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得50
刚刚
田様应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得20
刚刚
Meyako应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
柴桑青木应助科研通管家采纳,获得20
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
小曹发布了新的文献求助10
1秒前
urkk应助科研通管家采纳,获得20
1秒前
Meyako应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
魏1122完成签到,获得积分10
2秒前
WangXiaoze完成签到,获得积分10
2秒前
liyong发布了新的文献求助10
3秒前
俭朴夜香应助SiDi采纳,获得10
3秒前
MMMMM应助SiDi采纳,获得30
3秒前
明亮灭绝完成签到,获得积分10
3秒前
koori发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4290325
求助须知:如何正确求助?哪些是违规求助? 3817561
关于积分的说明 11954874
捐赠科研通 3461275
什么是DOI,文献DOI怎么找? 1898497
邀请新用户注册赠送积分活动 946993
科研通“疑难数据库(出版商)”最低求助积分说明 849984