Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications

计算机科学 食品安全 纳米技术 风险分析(工程) 生化工程 化学 业务 食品科学 材料科学 工程类
作者
Lunjie Huang,Da‐Wen Sun,Hongbin Pu,Qingyi Wei
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:18 (5): 1496-1513 被引量:179
标识
DOI:10.1111/1541-4337.12485
摘要

Abstract The public concerns about agrifood safety call for innovative and reformative analytical techniques to meet the inspection requirements of high sensitivity, specificity, and reproducibility. Enzyme‐mimetic nanomaterials or nanozymes, which combine enzyme‐like properties with nanoscale features, emerge as an excellent tool for quality and safety detection in the agrifood sector, due to not only their robust capacity in detection but also their attraction in future‐oriented exploitations. However, in‐depth understanding about the fundamental principles of nanozymes for food quality and safety detection remains limited, which makes their applications largely empirical. This review provides a comprehensive overview of the principles, designs, and applications of nanozyme‐based detection technique in the agrifood industry. The discussion mainly involves three mimicking types, that is, peroxidase, oxidase, and catalase‐like nanozymes, capable of detecting major agrifood analytes. The current principles and strategies are classified and then discussed in details through discriminating the roles of nanozymes in diverse detection platforms. Thereafter, recent applications of nanozymes in detecting various endogenous ingredients and exogenous contaminants in foods are reviewed, and the outlook of profound developments are explained. Evidenced by the increasing publications, nanozyme‐based detection techniques are narrowing the gap to practical‐oriented food analytical methods, while some challenges in optimization of nanozymes, diversification of recognition‐to‐signal manners, and sustainability of methodology need to conquer in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
此时此刻完成签到,获得积分10
1秒前
sincerity发布了新的文献求助10
2秒前
Galaxy完成签到,获得积分10
2秒前
xxk应助乱世老张采纳,获得10
2秒前
酱子完成签到,获得积分10
2秒前
2秒前
认真雨竹发布了新的文献求助30
3秒前
呆萌之槐完成签到,获得积分20
3秒前
研友_aLjKln发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
kuhao完成签到,获得积分10
5秒前
626完成签到,获得积分20
5秒前
五五五完成签到,获得积分10
5秒前
towanda发布了新的文献求助50
6秒前
酷波er应助龙湾飞机场采纳,获得10
6秒前
7秒前
orixero应助兮兮采纳,获得10
7秒前
7秒前
8秒前
慕青应助milkmore采纳,获得10
8秒前
8秒前
9秒前
9秒前
Alexendrial_kai完成签到,获得积分10
9秒前
元馨完成签到,获得积分10
10秒前
研友_aLjKln完成签到,获得积分10
10秒前
直率心锁发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
陈登发布了新的文献求助10
12秒前
XHY发布了新的文献求助10
13秒前
科研通AI6应助小懒虫采纳,获得10
14秒前
烟花应助冷静水池采纳,获得10
14秒前
如如完成签到,获得积分10
15秒前
杜若发布了新的文献求助10
15秒前
情怀应助快乐达不刘采纳,获得10
15秒前
充电宝应助枕雪听冷冷采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361879
求助须知:如何正确求助?哪些是违规求助? 4491925
关于积分的说明 13984618
捐赠科研通 4394945
什么是DOI,文献DOI怎么找? 2414251
邀请新用户注册赠送积分活动 1407009
关于科研通互助平台的介绍 1381673