Exploratory study on classification of lung cancer subtypes through a combined K-nearest neighbor classifier in breathomics

肺癌 分类器(UML) 模式识别(心理学) 人工智能 k-最近邻算法 计算机科学 接收机工作特性 医学 肿瘤科 机器学习
作者
Chunyan Wang,Yijing Long,Wenwen Li,Wei Dai,Shao-Hua Xie,Yuanling Liu,Yinchenxi Zhang,Mingxin Liu,Yonghui Tian,Qiang Li,Yixiang Duan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 5880-5880 被引量:40
标识
DOI:10.1038/s41598-020-62803-4
摘要

Abstract Accurate classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) in lung cancer is critical to physicians’ clinical decision-making. Exhaled breath analysis provides a tremendous potential approach in non-invasive diagnosis of lung cancer but was rarely reported for lung cancer subtypes classification. In this paper, we firstly proposed a combined method, integrating K-nearest neighbor classifier (KNN), borderline2-synthetic minority over-sampling technique (borderlin2-SMOTE), and feature reduction methods, to investigate the ability of exhaled breath to distinguish AC from SCC patients. The classification performance of the proposed method was compared with the results of four classification algorithms under different combinations of borderline2-SMOTE and feature reduction methods. The result indicated that the KNN classifier combining borderline2-SMOTE and feature reduction methods was the most promising method to discriminate AC from SCC patients and obtained the highest mean area under the receiver operating characteristic curve (0.63) and mean geometric mean (58.50) when compared to others classifiers. The result revealed that the combined algorithm could improve the classification performance of lung cancer subtypes in breathomics and suggested that combining non-invasive exhaled breath analysis with multivariate analysis is a promising screening method for informing treatment options and facilitating individualized treatment of lung cancer subtypes patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tang123发布了新的文献求助10
1秒前
1秒前
Allen完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
称心访文完成签到,获得积分10
1秒前
Fiona发布了新的文献求助10
1秒前
ding应助杨笛天使采纳,获得30
2秒前
xxxgoldxsx完成签到,获得积分10
2秒前
沐沐完成签到 ,获得积分10
2秒前
2秒前
宁灭龙完成签到,获得积分10
2秒前
DWWWDAADAD完成签到,获得积分10
2秒前
3秒前
东方元语发布了新的文献求助10
3秒前
阿龙完成签到,获得积分10
3秒前
晒太阳的加菲猫完成签到,获得积分10
3秒前
jersey完成签到 ,获得积分10
3秒前
3秒前
英姑应助Maxpan采纳,获得10
4秒前
茂茂应助欧皇采纳,获得10
4秒前
常赛君发布了新的文献求助10
5秒前
mmyhn应助hurui采纳,获得20
5秒前
5秒前
6秒前
丘比特应助Jean采纳,获得10
6秒前
gyh发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
隋菿99发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助小琴子采纳,获得10
7秒前
大大怪完成签到,获得积分10
8秒前
科研通AI2S应助YUU采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
9秒前
Akim应助专注白昼采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090