Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation

计算机科学 过度拟合 预处理器 人工智能 卷积神经网络 机器学习 支持向量机 模式识别(心理学) 选择(遗传算法) 人工神经网络 数据挖掘
作者
Junhao Wen,Elina Thibeau‐Sutre,Mauricio Diaz-Melo,Jorge Samper‐Gonzàlez,Alexandre Routier,Simona Bottani,Didier Dormont,Stanley Durrleman,Ninon Burgos,Olivier Colliot
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:63: 101694-101694 被引量:570
标识
DOI:10.1016/j.media.2020.101694
摘要

Over 30 papers have proposed to use convolutional neural network (CNN) for AD classification from anatomical MRI. However, the classification performance is difficult to compare across studies due to variations in components such as participant selection, image preprocessing or validation procedure. Moreover, these studies are hardly reproducible because their frameworks are not publicly accessible and because implementation details are lacking. Lastly, some of these papers may report a biased performance due to inadequate or unclear validation or model selection procedures. In the present work, we aim to address these limitations through three main contributions. First, we performed a systematic literature review and found that more than half of the surveyed papers may have suffered from data leakage. Our second contribution is the extension of our open-source framework for classification of AD using CNN and T1-weighted MRI. Finally, we used this framework to rigorously compare different CNN architectures. The data was split into training/validation/test sets at the very beginning and only the training/validation sets were used for model selection. To avoid any overfitting, the test sets were left untouched until the end of the peer-review process. Overall, the different 3D approaches (3D-subject, 3D-ROI, 3D-patch) achieved similar performances while that of the 2D slice approach was lower. Of note, the different CNN approaches did not perform better than a SVM with voxel-based features. The different approaches generalized well to similar populations but not to datasets with different inclusion criteria or demographical characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycc完成签到,获得积分10
刚刚
CodeCraft应助正在通话中采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
shihui发布了新的文献求助10
4秒前
LUOY1完成签到 ,获得积分10
5秒前
dundundun完成签到,获得积分10
5秒前
11秒前
徐彬荣完成签到,获得积分10
21秒前
烁果累累完成签到 ,获得积分10
23秒前
caiE完成签到,获得积分10
26秒前
宇文雨文完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
Leach完成签到 ,获得积分10
33秒前
手术刀完成签到 ,获得积分10
33秒前
黄紫红完成签到 ,获得积分10
33秒前
37秒前
sci完成签到 ,获得积分10
38秒前
不安溪灵完成签到,获得积分10
40秒前
zyb完成签到 ,获得积分10
41秒前
FashionBoy应助七月采纳,获得10
41秒前
何处遥山完成签到,获得积分10
42秒前
43秒前
44秒前
英吉利25发布了新的文献求助80
46秒前
yyq完成签到,获得积分10
47秒前
49秒前
阔达源智发布了新的文献求助10
51秒前
54秒前
54秒前
何处遥山发布了新的文献求助10
57秒前
zhilianghui0807完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助阔达源智采纳,获得10
1分钟前
1分钟前
Tuniverse_完成签到 ,获得积分10
1分钟前
今后应助正在通话中采纳,获得10
1分钟前
莫小烦完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
顺心醉蝶完成签到 ,获得积分10
1分钟前
火星上芹菜完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4211260
求助须知:如何正确求助?哪些是违规求助? 3745308
关于积分的说明 11785406
捐赠科研通 3413800
什么是DOI,文献DOI怎么找? 1873348
邀请新用户注册赠送积分活动 927830
科研通“疑难数据库(出版商)”最低求助积分说明 837242