亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LCE-Net: an efficient network for rice disease detection based on lightweight convolution

计算机科学 可扩展性 架空(工程) 背景(考古学) 特征(语言学) 人工智能 增采样 特征提取 目标检测 卷积(计算机科学) 图像拼接 任务(项目管理) 组分(热力学) 代表(政治) 机器学习 数据挖掘 模式识别(心理学) 深度学习 特征学习 特征模型 对象(语法) 计算机工程 资源(消歧) 实时计算 分布式计算 空间分析 噪音(视频) 图像处理 计算机视觉 构造(python库) 图像(数学) 强化学习
作者
Yaping Zhang,Rui-qiang Guo,Min Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (11): 115404-115404
标识
DOI:10.1088/1361-6501/ae1a07
摘要

Abstract With the advancement of smart agriculture, the accurate and rapid detection of rice diseases has become essential for ensuring food security. Deep learning has made significant progress in object detection, offering improved performance in recent years. However, most existing methods struggle to balance model size, detection accuracy, and processing speed, limiting their practical application in resource-constrained environments. To address this challenge, we propose a lightweight and efficient network, termed LCE-Net (Lightweight Convolution-Efficient Network), designed specifically for rice disease detection. The backbone of LCE-Net incorporates a scalable module called Scaling RepGhost-CSPELAN (SRG-CSPELAN), which enhances gradient flow and strengthens feature extraction while maintaining model compactness. To further improve performance, we introduce an Attention-based Internal Feature Interaction (AIFI) structure. This component leverages attention mechanisms to reduce computational overhead while enhancing the model’s ability to identify critical features. Additionally, we adopt an improved adaptive downsampling convolution to efficiently reduce feature map dimensions without losing essential spatial information. A context anchor attention mechanism is also integrated to boost feature representation in central regions and improve resource utilization. Finally, we design a Dynamic Task-Aligned Detection Head that combines task collaboration with adaptive computation. This design helps strike a practical balance between accuracy and efficiency. We evaluated LCE-Net on both a public rice disease dataset and a self-constructed dataset. Experimental results demonstrate that LCE-Net outperforms several state-of-the-art methods in both accuracy and detection speed. The model achieved 95.0% accuracy with 0.1901 s per image on the public dataset and 98.6% accuracy with 0.0106 s per image on the self-built dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
8秒前
我是老大应助光轮2000采纳,获得10
9秒前
14秒前
17秒前
光轮2000发布了新的文献求助10
21秒前
histamin完成签到,获得积分10
27秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
39秒前
maprang发布了新的文献求助20
39秒前
肾宝发布了新的文献求助10
45秒前
Orange应助肾宝采纳,获得10
49秒前
俊逸的若魔完成签到 ,获得积分10
53秒前
可爱的函函应助TiAmo采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
freyaaaaa应助科研通管家采纳,获得50
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
wearelulu完成签到,获得积分10
3分钟前
华仔应助光轮2000采纳,获得10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
3分钟前
光轮2000发布了新的文献求助10
3分钟前
浮游应助强健的忆梅采纳,获得10
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
上官若男应助光轮2000采纳,获得10
5分钟前
笨笨的怜雪完成签到 ,获得积分10
6分钟前
6分钟前
光轮2000发布了新的文献求助10
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498381
求助须知:如何正确求助?哪些是违规求助? 4595607
关于积分的说明 14449497
捐赠科研通 4528426
什么是DOI,文献DOI怎么找? 2481482
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438361