Multi-Modal Uterine-Activity Measurements for Prediction of Embryo Implantation by Machine Learning

支持向量机 人工智能 计算机科学 模式识别(心理学) 特征提取
作者
Federica Sammali,Celine Blank,Tom Bakkes,Yizhou Huang,Chiara Rabotti,B.C. Schoot,Massimo Mischi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 47096-47111 被引量:11
标识
DOI:10.1109/access.2021.3067716
摘要

In-vitro fertilization (IVF) is the most advanced treatment for infertility problems; however, its failure rate is still above 70% and the exact causes are often unknown. There is increasing evidence of the involvement of uterine contractions in IVF failure, especially during and after embryo transfer (ET). In this paper, we propose a new method to predict the success of IVF based on quantitative features extracted from electrohysterography (EHG) and B-mode transvaginal ultrasound (TVUS) recordings. To this end, probabilistic classification of the uterine activity, as either favorable or adverse to embryo implantation, is investigated using machine learning. Prior to machine learning, an additional method for EHG and TVUS feature extraction is here proposed that is based on singular value decomposition of the acquired EHG and TVUS recordings. Sixteen women were measured during three phases of the IVF treatment: follicular stimulation (FS), one hour before embryo transfer (ET1), and five to seven days after ET (ET5-7). After feature space reduction by correlation filtering, three machine-learning models, namely, support vector machine (SVM), K-nearest neighbors (KNN), and Gaussian mixture model (GMM), were optimized and tested by nested leave-one-out cross validation for their ability to predict successful embryo implantation. The highest accuracy (93.8%) was achieved by KNN in all phases and by SVM and in the FS and ET1 phases. Contraction frequency, unnormalized first moment and standard deviation, obtained from EHG and TVUS analysis, were the best features selected by the three classifiers. Our results show a multi-modal, multi-parametric strategy based on quantitative features to represent a novel, promising option for prediction of successful embryo implantation, overcoming the limitations of alternative approaches based on qualitative assessment of clinical variables. Yet, a larger dataset is required for improved training of the classifiers, as well as to assess their clinical value in the context of IVF procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yeiiiiii完成签到,获得积分20
1秒前
koukaki完成签到,获得积分10
1秒前
1秒前
1秒前
sean118完成签到 ,获得积分10
2秒前
DDIAO发布了新的文献求助10
3秒前
seal发布了新的文献求助10
3秒前
ardejiang发布了新的文献求助10
3秒前
czz完成签到,获得积分10
5秒前
5秒前
6秒前
csm发布了新的文献求助10
7秒前
科研通AI2S应助千千采纳,获得10
7秒前
7秒前
7秒前
阿木发布了新的文献求助10
7秒前
9秒前
onesail完成签到 ,获得积分10
10秒前
11秒前
11秒前
一枚小医生怎么办完成签到,获得积分10
12秒前
夜夜发布了新的文献求助10
12秒前
CAOHOU应助LC采纳,获得10
12秒前
amy发布了新的文献求助10
12秒前
13秒前
黎明的曙光发布了新的文献求助160
13秒前
吴学仕发布了新的文献求助10
13秒前
新青年完成签到,获得积分10
13秒前
14秒前
痴情的博超应助sdfgsdgs采纳,获得10
15秒前
melon发布了新的文献求助10
15秒前
15秒前
蛋蛋发布了新的文献求助10
15秒前
16秒前
16秒前
seal完成签到,获得积分20
17秒前
YHT完成签到,获得积分10
17秒前
思源应助金米面采纳,获得10
18秒前
DDIAO发布了新的文献求助10
18秒前
18秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
basics of anesthesia, 7th edition 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915811
求助须知:如何正确求助?哪些是违规求助? 3461425
关于积分的说明 10916731
捐赠科研通 3188241
什么是DOI,文献DOI怎么找? 1762507
邀请新用户注册赠送积分活动 852893
科研通“疑难数据库(出版商)”最低求助积分说明 793603