A novel designed manifold ultrathin micro pin-fin channel for thermal management of high-concentrator photovoltaic system

材料科学 散热片 微通道 冷却液 核工程 体积流量 热的 入口 光伏系统 可用能 火用 机械 机械工程 热力学 复合材料 电气工程 纳米技术 工程类 物理
作者
Jiguo Tang,Xiao Li,Rui Hu,Zhengyu Mo,Min Du
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:183: 122094-122094 被引量:11
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122094
摘要

To meet the requirements of cooling challenges of high concentrator photovoltaic (HCPV), a novel manifold ultrathin micro pin-fin heat sink (MUMPFHS) cooling technique is developed in this study. A comprehensive three-dimensional simulation model is established to investigate the thermal, energy and exergy performance of 10 × 10 mm2 HCPV cells cooling with MUMPFHS, using Star CCM+ with the help of user defined field functions. Compared with the previously proposed designs of the HCPV cooling schemes using jet impingement, hybrid jet impingement/microchannel and stepwise varying width microchannel, the present one shows great advantages of both uniform solar cell temperature and high cooling performance under a high solar concentration of 1000 suns. At inlet flow rate of 3 kg/h and temperature of 25 °C, the solar cell temperature can be reduced to 51 °C, with a small temperature non-uniformity of 3.4 °C. As the inlet flow rate increases, the average cell temperature and its non-uniformity further decrease, resulting in a higher electrical efficiency. However, the inlet coolant temperature has little impact on the cell temperature uniformity, allowing maximizing the inlet temperature to improve the thermal exergy efficiency under the recommended temperature range. In addition, five different designs of inlet/outlet plenums are proposed and integrated on the MUMPFHS, which could achieve a uniform flow distribution in each manifold channel. Thermal and exergy analysis confirms that taking the plenums into consideration increases the friction power which can be compensated by the improvement of electrical power due to the decrease of solar cell temperature. The present simulation results indicate that our designed MUMPFHS could increase the feasibility of using HCPV under higher solar concentration with safe operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李还好完成签到,获得积分10
刚刚
满意的柏柳完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
buno应助88采纳,获得10
3秒前
4秒前
三千世界完成签到,获得积分10
4秒前
4秒前
愉快的访旋完成签到,获得积分10
5秒前
Alpha完成签到,获得积分10
6秒前
大大发布了新的文献求助30
6秒前
翠翠发布了新的文献求助10
7秒前
半山发布了新的文献求助10
8秒前
8秒前
天天快乐应助CO2采纳,获得10
8秒前
隐形曼青应助junzilan采纳,获得10
9秒前
Dksido发布了新的文献求助10
9秒前
10秒前
思源应助卓哥采纳,获得10
10秒前
mysci完成签到,获得积分10
13秒前
14秒前
Quzhengkai发布了新的文献求助10
15秒前
15秒前
16秒前
落寞晓灵完成签到,获得积分10
16秒前
ORAzzz应助翠翠采纳,获得20
17秒前
zoe完成签到,获得积分10
17秒前
习习应助学术小白采纳,获得10
17秒前
18秒前
19秒前
tianny关注了科研通微信公众号
20秒前
20秒前
CO2发布了新的文献求助10
20秒前
桐桐应助zhangscience采纳,获得10
21秒前
求助发布了新的文献求助10
22秒前
buno应助zoe采纳,获得10
23秒前
junzilan发布了新的文献求助10
23秒前
23秒前
细品岁月完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808